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Abstract

In the SSLAD-Track 3B challenge on continual learn-
ing, we propose the method of COntinual Learning with
Transformer (COLT). We find that transformers suffer less
from catastrophic forgetting compared to convolutional
neural network. The major principle of our method is
to equip the transformer based feature extractor with old
knowledge distillation and head expanding strategies to
compete catastrophic forgetting. In this report, we first in-
troduce the overall framework of continual learning for ob-
ject detection. Then, we analyse the key elements’ effect on
withstanding catastrophic forgetting in our solution. Our
method achieves 70.78 mAP on the SSLAD-Track 3B chal-
lenge test set.

1. Introduction
Catastrophic forgetting is one of the major differences

between artificial neural networks and human brains [20].
To overcome catastrophic forgetting in artificial neural net-
works, three types of methods have been explored in the
past few years, replay [15, 3, 6, 20, 10], regularization
[9, 19, 8, 4, 17, 13, 5, 7, 16], and expand [22, 14, 1, 21].
All of the above methods try to answer the question, ‘what
kind of knowledge storage, what kind of training strategies,
and what kind of network structures are suitable to keep old
memories for neural networks?’ In this report, our answer
is to use the transformer as the feature extractor, conduct
knowledge distillation on old samples, and reduce the do-
main gap by adaptively expanding.

The SSLAD-Track 3B challenge at ICCV 2021 requires
to design continual learning algorithms for object detection
in automatic driving scenarios. There are in total four differ-
ent scenarios. The model shall learn from each scenario one
by one. In the end, the model is evaluated on the four test
sets for each scenario. There are totally 7.8k images in the
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training set of the four scenarios. In each scenario, there are
six classes of objects, pedestrian, cyclist, car, truck, tram,
and tricycle. In the challenge, mean AP across all four test
set of the four scenarios is used as the indicator.

2. Methods
In this section, we present our method to deal with catas-

trophic forgetting in object detection. As shown in Fig. 1,
there are three major components in our framework. As
we observe that transformers suffer less from the forgetting
problem, we use the transformer as the feature extractor.
Following regularization based continual learning methods,
we employ sample replay as well as old knowledge distil-
lation strategies. To reduce the domain gap among scenar-
ios, we adaptively expand the detector heads according to
the current model’s validation loss on the training set of the
new scenario.

We follow the rules of the SSLAD-Track 3B challenge,
the network structure only changes when the model adap-
tively expand new heads when large domain gaps are de-
tected, and we only store 250 images in the memory through
the whole continual training period.

2.1. Transformer: Less Forgetting Feature Extrac-
tor

Using convolutional neural network (CNN) as the fea-
ture extractor is common in continual learning methods for
computer vision tasks. However, two characteristics of CN-
N limits its performance in continual learning. First, large
CNN models easily get over-fitted on a domain when there
lack a large mount of training data. One way to compete
for catastrophic forgetting in continual learning is fixing the
model’s backbone during training and only finetune the de-
tector’s neck and head. This brings a side effect that the
model gets bad performance on the new scenario. It can be
inferred that if the backbone can extract features which gen-
eralize well to unseen domains, then there is little need to
adjust the backbone to fit new scenarios in continual learn-
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Figure 1. Overall framework of COLT.

ing. And the model still gets good performance on new sce-
narios. Second, another reason causes the forgetting prob-
lem in the convolutional neural network is the batchnorm
(BN) layer. It has been observed that if we fix all the B-
N layers in continual training, the forgetting problem gets
obviously remitted.

Compared to CNN, transformer has been shown to have
a good ability to generalize well to new domains, and it does
not have BN layers. Since it naturally overcomes the two
elements for forgetting, we use the Swin Transformer [11]
as the backbone for CascadeRCNN.

2.2. Adaptive Head Expanding

Other than catastrophic forgetting, there exists another
problem in continual learning, which is the problem of do-
main gap. Although domain adaptation methods can partly
solve this problem, it is still face with a trade-off between
two domains. Inspired by the fact that expert models usual-
ly perform better than one single model [2], we implemen-
t multiple heads for different domains whose gap is large.
During training, we first estimate the domain gap between
the new task and the old tasks. The estimation is conduct-
ed by calculating the average validation loss of the current
model on the new task. If domain gap is large, than the
model expands a new head and this head specifically learn-
s to predict the samples of this domain. And the original

head learns to keep old knowledge on the old tasks. During
testing time, given the sample’s task-id, the model chooses
which head to predict the results.

2.3. Old Knowledge Distillation

Following the work in [9, 19, 8, 4, 17], knowledge dis-
tillation on old samples effectively competes catastrophic
forgetting. For simplicity, we only conduct knowledge dis-
tillation (KD) on the backbone and neck of the detector. In
the training period of each scenario, the model before train-
ing is copied and fixed to be used as the teacher model. The
other model (student) is trained on the new scenario, togeth-
er with the KD loss as a regularization term. The KD loss
is defined as follows:

LKD
i =

M∑
j=1

||F t
j (xi)− F s

j (xi)||2+
N∑

k=1

||Gt
j(xi)−Gs

j(xi)||2

(1)
where xi is a sample from old scenarios which is stored in
the rehearsal memory. F t and Gt are backbone and neck
features extracted by the teacher model, and F s and Gs are
backbone and neck features extracted by the student model.

In above definition, the first term indicates the backbone
KD loss, and the second term indicates the neck KD loss.
The memory size is limited to 250 samples, according to
the rules of the competition.



Table 1. Ablation study on network structure and other strategies. The models are evaluated on the validation set.
Method Detector Backbone KD Head Expanding Mean AP ↑ FR ↓
1 Yolov3 Darknet19 w/o w/o 44.28 3.91
2 FasterRCNN ResNet50 w/o w/o 54.80 4.97
3 FasterRCNN ResNet101 w/o w/o 54.22 17.76
4 FasterRCNN ResNet101 w w/o 57.95 14.58
5 CascadeRCNN ResNet101 w/o w/o 54.28 17.45
6 CascadeRCNN ResNet101 w w/o 58.00 14.32
7 CascadeRCNN Transformer w/o w/o 72.67 2.94
8 CascadeRCNN Transformer w w/o 72.99 1.65
9 CascadeRCNN Transformer w/o w 73.59 1.71
COLT CascadeRCNN Transformer w w 75.11 0.46

3. Experiments
3.1. Settings

In the SSLAD-Track 3B challenge, SODA10M is a 2D
object detection dataset, which contains images captured
from four different scenarios. These scenarios are set as
four tasks for continual learning. The continual learner is
trained on each task sequentially. The tasks are:

• Task 1: Daytime, citystreet and clear weather. There
are 4470 images in the training set.

• Task 2: Daytime, highway and clear/overcast weather.
There are 1329 images in the training set.

• Tast 3: Night. There are 1479 images in the training
set.

• Tast 4: Daytime, rain. There are 524 images in the
training set.

After training on all four tasks, the model is evaluated
on the validation set and test set. Mean AP over the four
tasks is used as the final indicator. In this report, we also
introduce forgetting rate (FR) to compare the relative for-
getting degree between different methods. Forgetting rate
is defined as follows:

FR =
1

T − 1

T−1∑
i=1

Di(Mi)−Di(MT )

Di(Mi)
(2)

Forgetting rate (FR) indicates the disparity between current
model’s performance and its historical performance. If FR
is large, it means that current model suffers a lot from catas-
trophic forgetting, and falls far behind the upper bound of
itself. If FR is small, it means that current model reaches
the upper bound performance which it shall have.

3.2. Implementation Details

The algorithm is implemented using Avalanche [12]. We
use the CascadeRCNN as the detector in continual learn-
ing. For the backbone, we use the Swin Transformer [11].

To improve the generalization ability of the transformer, we
first pre-train it on ImageNet. During pre-training, we con-
duct data augmentations like multi-scale, flip, color jitter-
ing, and MixUp on instances. For continual learning on the
SSLAD dataset, we train the model on 8 GPUs, one sample
for each GPU. During training each scenario, the learning
rate is set to 0.001 and divide by 10 after 33 and 44 epochs.
Training is stopped at epoch 50. The ratio between the su-
pervised learning loss and knowledge distillation loss is set
to 1:20. When adaptively expanding the detector heads, the
threshold of the average validation loss is set to 1.2.

3.3. Results

We report the comparative results on the SSLAD-
Track3B validation and test sets. Our method (COLT) gets
75.11 mean AP on the validation set. As a comparison, the
baseline provided on the challenge web-site achieves 55.53
mean AP. We get 19.58 mean AP higher than the baseline
method on the validation set. On the test set, we get 70.78
mean AP. The detailed results on the test set are shown in
Table 2.

3.4. Ablation Study

Model size. To study the influence of the model size
on continual learning, we compare the performance be-
tween Faster RCNN with ResNet50 and Faster RCNN with
ResNet101. Results in Table 1 (method 2 v.s. 3) show that
larger model does not guarantee better continual learning
performance. We can see that the large model (17.76) even
performs worse than the small model (4.97) on FR (smaller
is better). An explanation is that when the model becomes
larger, it not only gets higher model capacity, but also be-
comes easier over-fitted to current scenario. Over-fitting
leads to good performance on current task, while causes the
forgetting problem of old tasks.

As comparison, we train an even larger detector using
CascadeRCNN with transformer as backbone. In Table 1
(method 5 v.s. 7), when we switch from ResNet101 (small)
to transformer (large), both mean AP and FR indicate that



Table 2. Results on the SSLAD-Track3B test set.
Method Mean AP Task1 Task2 Task3 Task4 pedestrian cyclist car truck tram tricycle
COLT 70.78 77.24 68.12 68.52 69.24 73.79 78.20 88.37 77.78 71.50 35.04

the latter is better. Through these experiments, we conclude
that the major element that influences the model’s forgetting
problem is not model size, but the generalization ability of
the feature extractor.

Head Expanding. Since head expanding requires the
task-id at test time, it is an optional module in our frame-
work. In Table 1 (method 7 v.s. 9, 8 v.s. COLT), head ex-
panding is shown to be effective. The major improvement
is on task 3. It is because task 3 is the scenario of the night,
which is largely different from the other tasks. So the model
adaptively expand a new head for task 3 before training on
the night scenario.

Old Knowledge Distillation. Previous work show that
knowledge distillation on CNN models is an efficient way
to compete for catastrophic forgetting. Our experiment in
Table 1 (method 7 v.s. 8, 9 v.s. COLT) shows that it still
holds for transformer based models. The knowledge distil-
lation strategy improves the mean AP from 73.59 to 75.11,
and FR from 1.71 to 0.46.

4. Conclusion

In this report, we present our continual learning objec-
t detection method on SSLAD-Track 3B challenge. Our
method consists of three major components: transformer
based feature extractor, old knowledge distillation, and
adaptively growing multiple heads architecture. Through
experiments, we show that transformers suffer less from
catastrophic forgetting. Our method achieves 70.78 mean
AP on the SSLAD-Track 3B challenge test set, which helps
us get the 1st place in this challenge.

Future work. In this report, we try to emphasis the prin-
ciple of the transformer in overcoming catastrophic forget-
ting, but we still know little about the transformer’s char-
acteristics in continual learning. One future direction is
to study the transformer inspired network which is specif-
ically designed for continual learning. During this chal-
lenge, we also tried to generate pseudo samples with VAEs
and GANs, which have been proven effective in previous
work [6, 18, 10, 20] on continual learning for classification
task. However, we suffered from problems of variant of in-
stance’s aspect ratio, image generation for object detection,
long-tail problem for generative models, and so on. Gen-
erative sample/feature replay for object detection is also a
critical problem which needs to be studied in the future.
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