
Report of Choco Leibniz Team
SSLAD Competition Track 3A (ICCV 2021)

Gabriele Graffieti, Guido Borghi, Davide Maltoni, Matteo Ferrara
Department of Computer Science and Engineering (DISI)

University of Bologna
Via dell’Università 50, Cesena (FC), Italy

{name.surname}@unibo.it

1. Introduction
In this report, we describe the approach used to address

the “ICCV 2021 Workshop SSLAD Track 3A - Continual
Object Classification” competition. We divided our analy-
sis into the main aspects on which we focused in the devel-
opment of our solution.

2. Competition Requirements
The Track 3A of the competition is focused on continual

object recognition. The dataset (see Sect. 2.1) is composed
of 6 classes. The samples arrive at the model in a streaming
fashion, maintaining the temporal coherence of the original
data. The samples have to be processed at a maximum of 10
samples at a time, and the model needs to be available for
evaluation at any time, without any additional computation
between training and testing. Moreover, the data must be
seen only once, so no additional epochs on the same expe-
rience are allowed, so once a group of 10 samples has been
processed by the model, the same samples cannot be fur-
ther exploited (except with a limited replay memory). Ad-
ditional requirements are the following:

• The maximum number of parameters of the model is
25M, which is 105% of a ResNet-50 [3].

• The capacity of any sort of memory is limited to 1000
objects.

• The maximum size of a single batch is 10.

• Pretraining is allowed only on ImageNet.

2.1. Soda10M Dataset

The dataset used for the competition is the Soda10M
dataset [2], a large-scale dataset collected for self-
supervising learning and domain adaptation in autonomous
driving. The original frames are collected every 10 seconds
within 32 different cities under different weather conditions,

from these frames several bounding boxes are cropped and
used as input for the competition. In our opinion, among the
specific challenges of the dataset, the main issues related to
the competition, i.e. elements that can greatly influence the
performance of the continual learning-based classifier, are
the following:

• Occlusions: we note that a great number of objects de-
picted inside the patches are occluded, even by an ob-
ject that belongs to the classes present in the Soda10M
dataset (for instance, several buses are occluded by
cars); therefore, these occlusions can easily fool the
classifier’s prediction.

• Image resolution: objects that are placed in the back-
ground far from the acquisition device may visually
appear with a very low resolution once rescaled to the
crop size of the competition (64× 64).

• Bad quality images: images captured at night and un-
der bad weather conditions are heavily affected by bad
lighting and low contrast.

3. Model and Hyperparameters

We exploit the ResNet-50 [3] neural network as classifi-
cation model. The last fully connected layer is substituted
in order to fit the competition dataset, passing from 1000
(the number of classes on Imagenet) to 7 (the number of
classes in the competition plus a null one) in final neurons.
We add bias to maintain the architecture as similar as possi-
ble to the original network. We exploit a pretrained model
on the ImageNet-1000 dataset [1]. The weights have been
downloaded from the official torchvision website1. The re-
ported model top-1 accuracy on ImageNet is 76.13%. We
use the Stochastic Gradient Descent (SGD) optimizer with
a learning rate of 10−2, with momentum and weight decay

1https://pytorch.org/vision/stable/models.html

https://pytorch.org/vision/stable/models.html

set to 0. As loss function, we use the Cross Entropy (CE)
loss in the standard form, which can be expressed as:

L(y, l) = − log

(
exp(yl)∑
j exp (yj)

)
, (1)

where y is the output of the network (logits) while l is the
index of the correct class. In addition to the CE loss of
Equation 1, we add a weight α to each class, thus, the loss
becomes (L(y, l) = αl · L(y, l)). We set α0 = 0 and
α1,...,6 = 1. The batch size is set to 10, the maximum value
allowed by the competition.

4. Training procedure
The input batch is first transformed in a tensor of size

(b, c, w, h), where b = 10 (batch size), c = 3 (RGB image
channels), and w = h = 64 (the image dimensions, then
the crop is squared). Then, the width and the height of the
tensor are resized through the Nearest Neighbour interpo-
lation, from 64 × 64 to 224 × 224 to resemble the original
image size of the ImageNet dataset on which the model has
been pretrained. Even though the appearance of the patches
may be degraded by this operation (the original size of the
input patches is about 1/12 of the final size), we note that the
convolutional kernels of the model respond better in resized
images. This can be explained by the fact that ImageNet
contains classes (such as trucks, cars, bicycles, etc.) similar
to the ones present in the Soda10M dataset, thus the con-
volution filters have been tuned to extract strong features
from those images. Images of the same size contain objects
of about the same size (in pixels) so it is normal to think
that the pretrained filters respond better if the original size
is preserved.

After that, an “on-the-fly” data augmentation technique
is applied, in order to increment the variety of the input ten-
sors. Due to the characteristic of the benchmark, the input
variety is limited since many similar images of the same ob-
jects are provided together to the network. The motivation
is the streaming nature (i.e. the temporal order is preserved
and original frames are acquired with a low frame rate) of
the frames from which input patches are cropped. There-
fore, before passing the tensor to the model, an horizontal
flipping is applied and both the original and the flipped ver-
sion are fed to the model.

Finally, only during the first experience, the resulting
batch is put in temporary memory (of size 10) and passed
twice through the model. After each forward step, the loss
and the gradients are computed, and then the optimization
procedure is applied. This operation is motivated by the ob-
servation that, in the first experience, the learning of the
model (especially considering classes with few samples)
can be boosted by seeing a larger number of (even identical)
samples. This tries to imitate a traditional machine learning

training procedure, in which the same images are fed to the
network many times across the epochs.

5. Classification Head Protection
One of the main causes of catastrophic forgetting in neu-

ral networks is the so-called “learning in isolation” prob-
lem. This issue mainly arises when only a limited number of
classes is present in each experience, or when some classes
are underrepresented, i.e. they are present with a very low
number of samples with respect to the other classes in the
training data, leading to the forgetting of these classes. The
forgetting especially occurs in the classification head, i.e.
the last layer (usually a fully connected layer) of the adopted
neural network.

In our experiments, we observed the same effect with the
Soda10M dataset, probably due to the very limited presence
(e.g. tricycle) or even the total absence (e.g. the second ex-
perience presents only cars, trucks, and trams) of certain
classes. We address this issue using the CWR algorithm
proposed in [4], where was presented as a baseline tech-
nique for continual learning from sequential batches. CWR
maintains two sets of weights for the classification layer,
namely Consolidated Weights (cw) and Temporary Weights
(tw):

• cw: contains the weights from the previous experience
that are used in the consolidation phase. In this phase,
the cw weights are merged with the weights of the cur-
rent experience tw;

• tw: contains the weights used to train the model in the
current experience. The weights are initialized to 0 at
the starting of the experience, and only the weights of
the current experience’s classes are loaded from cw.

Differently from the original paper, we do not freeze the
weights of the feature extractor, as proposed in [5].

6. Replay Memory
Replay is known to be one of the most effective ways

to contrast the catastrophic forgetting problem, especially
in complex continual learning scenarios. Therefore, we de-
cide to adopt this paradigm in our implementation, along-
side CWR.

We created six different buffers of memory, one for each
class. Each of these buffers is limited in size: in our fi-
nal implementation, we set this limit to 100 for all classes,
leading to a final memory size of 600 samples. We observe
that including a larger number of samples per class or, al-
ternatively, reducing the number of classes memorized (put
only some classes in memory), do not produce any partic-
ular benefit. This is probably due to the following reasons:
i) the total number of tricycles available in the training set

is 82, lower than the fixed buffer size; ii) it is important to
limit the number of replay samples for certain classes, such
as car, that represent the large majority of input samples.
Augmenting the class buffer size tends to produce a nega-
tive effect, since the number of tricycles is bounded by the
training data (no more than 82) while the other classes fully
occupy their buffer at the end of the first experience, mak-
ing the replay memory more unbalanced. The combination
of the two points above leads to a well-balanced memory
class since, already starting from the second experience, the
memory buffer is full (except for the tricycle class), and the
imbalance is not too much marked. We also noticed that
setting a different size for each class does not produce ap-
preciable improvements.

We divide the minibatch (of size 10) into 5 samples from
the current experience and 5 samples loaded from the re-
play memory. Using a minibatch composed in that way, the
total number of minibatches doubles for each experience
w.r.t. not using replay. The replay data is sampled randomly
without replacement from the replay memory. When all the
samples on the memory have been sampled, the sampling
procedure is started again.

6.1. Memory Management

The memory is managed in the following way: as men-
tioned before, a buffer of dimension 100 is maintained for
each class, for a total of 600 samples. During the first ex-
perience the memory is not used for the training, but the
samples from the current experience are accumulated in the
buffers. If a buffer for a specific class is not full and in the
current minibatch are present patterns of the corresponding
class, all the patterns are memorized in the buffer. If the
buffer is full, we use reservoir sampling [6], which guaran-
tees that every sample has the same probability to be in the
replay memory at the end of the experience. We maintain
a counter for each class that counts the samples seen so far,
and we update the memory as follows:

1 Cc = 0 ∀c ∈ {0, .., 6}
2 Mc ← ∅ ∀c ∈ {0, .., 6}
3 for d, c in the training dataset do
4 Cc = Cc + 1
5 if Cc ≤ 100 then
6 Mc[Cc]← d
7 else
8 j = random int(1, Cc)
9 if j ≤ 100 then

10 Mc[j]← d
11 end
12 end
13 end

Algorithm 1: Reservoir sampling

where d and c are the data and the class of a single sam-
ple in the minibatch, C is a counter for the number of sam-
ples viewed for each class,M is the replay memory, com-
posed of a buffer of 100 elements for each class.

Since we do not want that the replay memory used in
the current experience is altered by the insertion of sam-
ples from the current experience, we used, as a tempo-
rary buffer for the insertion, the remaining 400 free slots
of the memory. For each new experience we inserted 100/i
(i = index of the current experience) samples from the cur-
rent experience (so 100 from the first experience, 50 from
the second experience, and so on). In the first experience,
we use the memoryM and the operations described in al-
gorithm 1. For the subsequent experiences, we use an addi-
tional buffer B of dimension 100/i for each class. The pat-
tern are inserted following algorithm 1, but using B instead
of M and buffer dimension 100/i instead of 100. At the
start of a new experience, we remove 100/i elements from
each class fromM and insert the new replay samples from
B. After that B is emptied. Note that the maximum alloca-
tion of memory is 900 samples, since the dimension ofM
is always 600, while the maximum dimension of B is 300
(50 samples per class during the second experience).

7. Contribution of the Components

In this section we we provide some comments about the
contribution of each component of the proposed solution,
evaluating them in a fairly high-level manner. We use three
levels of importance, characterized by one *, two **, or
three *** stars. Components that are the most important
for our solution (in terms of final accuracy on the validation
set) are evaluated using 3 stars, components that contributed
in a minor manner to the final accuracy are evaluated with
2 stars, components that do not contribute much to the final
accuracy (changing them only change the accuracy of less
than 1 percentual point) are evaluated 1 star.

Continuous components (such as learning rate) are eval-
uated changing them in a reasonable manner around the
found optimal value. Discrete components (such as the
model) are evaluated against similar possibilities (e.g. mod-
els with a similar number of parameters and similar accu-
racy on ImageNet-1000). On/off components (such as im-
age resizing) are evaluated based on the difference between
using or not using the analyzed component. The contribu-
tions are summarized in Table 1.

The evaluations of the contribution are not totally ob-
jective, and the reported importance should not be in-
tended as a guide for designing continual learning strate-
gies. Nonetheless, we believe that this can be useful for the
readers, and future works and research directions.

Component Contribution

Model **
Learning rate *
Optimizer ***

Loss weights *
Image resizing ***

Data augmentation **
Double batch (1st exp.) *

CWR **
Not freezing the feature extractor ***

Replay memory ***
Balanced memory ***
Reservoir sampling **

Table 1. The importance of the contribution of each component of
the proposed solution based on the final accuracy on the validation
set. 3 stars *** indicates maximum importance, 1 star * indicates
limited importance.

8. Hardware and Video Memory Usage
We run our experiments on two machines. In both cases,

the computation load is influenced by the use of the replay
memory: this is due to the caching (in RAM) of the replay
memory that does not need to be loaded from disk at every
batch.

The first server is equipped with an Intel Xeon E5-
2650@2.00GHz processor, 64 GB of RAM, and an Nvidia
1080 Ti (11 GB). In this setting, with our implementation,
the training and validation phases run at about 3.6 it/s in the
first experience and about 5.7 it/s from the second experi-
ence. The second machine is equipped with an AMD EPYC
7282, 256GB of RAM, and an Nvidia Quadro RTX 5000
(16GB). In this setting, with our implementation, the train-
ing and validation phases run at about 3.9 it/s in the first
experience and about 7.5 it/s from the second experience.

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li

Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 1

[2] Jianhua Han, Xiwen Liang, Hang Xu, Kai Chen, Lanqing
Hong, Chaoqiang Ye, Wei Zhang, Zhenguo Li, Chunjing Xu,
and Xiaodan Liang. Soda10m: Towards large-scale object
detection benchmark for autonomous driving. arXiv preprint
arXiv:2106.11118, 2021. 1

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 1

[4] Davide Maltoni and Vincenzo Lomonaco. Continuous learn-
ing in single-incremental-task scenarios. Neural Networks,
116:56–73, 2019. 2

[5] Lorenzo Pellegrini, Gabriele Graffieti, Vincenzo Lomonaco,
and Davide Maltoni. Latent replay for real-time continual
learning. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 10203–10209.
IEEE, 2020. 2

[6] Jeffrey S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Softw., 11(1):37–57, Mar. 1985. 3

