
Consistent Instance Classification for Unsupervised Representation Learning

Depu Meng1 Zigang Geng1 Zhirong Wu2 Bin Xiao2 Houqiang Li1 Jingdong Wang3*

1University of Science and Technology of China 2Microsoft 3Baidu Inc.

Abstract

In this paper, we address the problem of learning the
representations from images without human annotations.
We study the instance classification solution, which regards
each instance as a category, and improve the optimization
and feature quality. The proposed consistent instance clas-
sification (ConIC) approach simultaneously optimizes the
classification loss and an additional consistency loss ex-
plicitly penalizing the feature dissimilarity between the aug-
mented views from the same instance. The benefit of opti-
mizing the consistency loss is that the learned features for
augmented views from the same instance are more com-
pact and accordingly the classification loss optimization be-
comes easier, thus boosting the quality of the learned repre-
sentations. This differs from InstDisc and MoCo that use an
estimated prototype as the classifier weight to ease the opti-
mization. Different from SimCLR that directly compares dif-
ferent instances, our approach does not require large batch
size. Experimental results demonstrate competitive perfor-
mance for linear evaluation and better performance than
InstDisc, MoCo and SimCLR at downstream tasks, as well
as competitive or superior performance compared to other
methods with stronger training setting.

1. Introduction

Learning good representations from unlabeled images
is a land-standing and challenging problem. The main-
stream methods include: generative modeling [28, 30], col-
orization [50], transformation or spatial relation predic-
tion [14, 36, 19], and discriminative methods, such as in-
stance classification [16], and contrastive learning [9].

The instance discrimination methods show promising
performance for downstream tasks. There are two basic
objectives that are optimized [24, 9, 44]: contraction and
separation. Contraction means that the features of the aug-
mented views from the same instance should be as close
as possible. Separation means that the features of the aug-
mented views from one instance should lie in a region dif-

*Corresponding author. wangjingdong@baidu.com

(a) (b)
Figure 1: Visualizing learned feature distributions for 2D toy ex-
amples. Each color corresponds to augmented views of the same
instance. (a) jointly optimize the consistency and classification
losses. (b) only optimize the classification loss. The setting of this
visualization is given in Appendix G.

ferent from other instances.
The instance classification framework, such as Inst-

Disc [46], and MoCo [24, 10], adopts a prototype-based
classifier, where the prototype is estimated as the mov-
ing average of the corresponding features of previous
epoches [46] or as the output of an moving-average net-
work [24, 10]. The prototype-based schemes ease the op-
timization of the classification loss in the challenging case
that there is over one million categories. BYOL [20] com-
putes the prototype in a way similar to MoCo, and only
aligns the feature of augmented views with its prototype
leaving the separation objective implicitly optimized. The
prototype, computed from a single view rather than many
views and from networks with different parameters, might
not be reliable enough, making the contraction and separa-
tion optimization quality not guaranteed.

The contrastive learning framework1, such as Sim-
CLR [9] and [48], simultaneously maximizes the similar-
ities between each view pair from the same instance and
minimizes the similarities between the view pair from dif-
ferent instances. This framework directly compares the fea-
ture of one view to a different view other than to a prototype,
avoiding the unreliability of the prototype estimation. It,
however, requires large batch size for each SGD iteration to
compare enough number of negative instances for imposing
the separation constraint2, increasing the difficulty in large
batch training.

We propose a simple unsupervised representation learn-

1InstDisc and MoCo are also closely related to contrastive learning and
are regarded as contrastive learning methods by some researchers.

2Appendix B shows one possible reason that it requires large batch.

1

ing approach, consistent instance classification (ConIC), to
improve the optimization and feature quality. Our approach
jointly minimizes two losses: instance classification loss
and consistency loss. The instance classification loss is for-
mulated by regarding each instance as a category. Its op-
timization encourages that different instances lie in differ-
ent regions. The consistency loss is formulated to directly
compare the features of the augmented views from the same
instance and encourages high similarity between them.

One benefit from the consistency optimization is to ex-
plicitly make the features of the same instances compact and
thus to accelerate the optimization of the classification loss.
This is different from [46], [24], heuristically estimating the
classifier weights using the prototypes and does not suffer
from the prototype estimation reliability issue. On the other
hand, our approach does not rely on large batch training,
that is essential for SimCLR [9], because the whole loss in
our formulation can be decomposed as a sum of components
each of which only depends on one instance.

We demonstrate the effectiveness of our approach in un-
supervised representation learning on ImageNet. Our ap-
proach achieves competitive performance under the linear
evaluation protocol. When finetuned on downstream tasks,
such as object detection on VOC, object detection and in-
stance segmentation on COCO, instance segmentation on
Cityscapes and LVIS, as well as semantic segmentation on
Citeyscapes, COCO Stuff, ADE and VOC, our approach
performs better than InstDisc, MoCo and SimCLR, and
competitively or superiorly compared to other methods with
stronger training setting (e.g., InfoMin and SwAV).

2. Approach
Given a set of image instances without any labels, I =

{I1, I2, . . . , IN}, the goal is to learn a feature extractor
(a neural network) x = f(I). The discrimination ap-
proach expands each image In to a set of augmented views
{I1n, I2n, . . . , IKn }, and formulates the problem in a way that
the features of the augmented views of each instance are
similar (contraction) and the features of different instances
are distributed separately (separation). In the following,
we first review three related instance classification methods,
then we introduce our approach and present the analysis.

2.1. Instance classification
Exemplar CNN. Exemplar-CNN [16] formulates unsuper-
vised representation learning as an instance classification
problem. The augmented views from one instance are re-
garded as one category, and the augmented views from dif-
ferent instances are regarded as different categories. The
softmax loss is used and written for the kth view of the nth
instance:

`s(x
k
n) = − log

ew
>
n x̃kn/τ∑N

j=1 e
w>
j x̃kn/τ

, (1)

0.5 1.5 2.5 3.5 4.5 5.5

5.46

5.48

5.50 s

c

0.034

0.036

0.038

0.040

Figure 2: Illustration of the final classification loss and consistency
loss values in training.
where τ is the temperature. Exemplar-CNN uses the stan-
dard backpropagation algorithm to learn the network f(·)
and the classification weights {w1,w2, . . . ,wN}.
InstDisc. The InstDisc approach [46] optimizes the net-
work parameters, and heuristically estimates the classifier
weights {w1,w2, . . . ,wN} in each epoch using a feature
moving average scheme, i.e., compute the exponential aver-
ages of the features of the corresponding instances (stored
in a memory bank) in the previous epochs. The heuristic
weight estimation scheme eases the network optimization.
MoCo. MoCo [24] instead adopts a network moving av-
erage scheme. In each SGD iteration, MoCo updates a
momentum network whose parameters are moving average
of the previous network parameters. It computes the fea-
tures from the momentum network as the classifier weights,
which are further maintained by a queue. This leads to bet-
ter classifier weight estimates.

2.2. Consistent instance classification
We introduce a consistency loss to explicitly penalize the

dissimilarity between augmented views from the same in-
stance. Let sim(u,v) = u>v/‖u‖‖v‖ denote the cosine
similarity between u and v. The consistency loss for two
views xin and xjn from the image In is formed as

`c(x
i
n,x

j
n) = (1− sim(xin,x

j
n))

2 = (1− x̃in
>x̃jn)

2. (2)

Here, we normalize the feature vector x̃ = x/‖x‖2 as done
in InstDisc and MoCo. The consistency loss for the N im-
ages each with K augmented views is written as

Lc =
∑N

n=1

∑K

i,j=1,i6=j
`c(x

i
n,x

j
n)

=
∑N

n=1

∑K

i,j=1,i6=j
(1− x̃in

>x̃jn)
2.

(3)

The classification loss for the N images each with K aug-
mented views is written as

Ls =
∑N

n=1

∑K

k=1
`s(x

k
n)

= −
∑N

n=1

∑K

k=1
log

ew
>
n x̃kn/τ∑N

j=1 e
w>
j x̃kn/τ

.
(4)

where we let the classifier weight be an `2-normalized vec-
tor: ‖w‖2 = 1, which is similar to normalizing the proto-
type vector as done in InstDisc and MoCo.

α LE
VOC Det. COCO Det. Semantic Seg.

VOC07+12 Mask-R 1× City. Stuff
APbb APbb50 APbb APmk mIoU mIoU

0 63.6 54.9 80.7 38.4 34.9 76.7 33.4
0.5 65.0 56.1 81.5 39.0 35.3 76.9 33.6
1.5 65.1 56.7 82.0 39.3 35.5 77.3 34.3
2.5 65.1 56.4 81.9 39.2 35.5 77.9 35.3
3.5 64.6 56.6 81.6 39.3 35.5 77.9 34.5
4.5 64.7 56.1 81.8 39.2 35.4 77.0 34.3

Table 1: Illustrating how the consistency weight α influences the
performance. The observations are consistent to the one about the
classification loss shown in Figure 2.

We combine the two losses together,

L = Ls + αLc, (5)

where α is a weight for the consistency loss to balance the
two losses, avoiding over-optimizing the consistency loss or
merely optimizing the classification loss.
Consistency helps optimizing the classification loss. In
general, when the features for each class are more com-
pact, different classes are more easily separated and the
softmax classification is more efficiently optimized. Our ap-
proach has the benefits: the feature distribution for the same
instance is compact and the distributions for different in-
stances are well separable, because of maximizing the con-
sistency. Figure 1 (a) illustrates the benefit from simultane-
ously optimizing the consistency loss and the classification
loss. Figure 1 (b) shows the insufficiency of only optimiz-
ing the classification loss. One can see that the distributions
of different instances in Figure 1 (a) are better separated and
the distribution for each instance is more compact.

Let’s see how the consistency term makes the gradi-
ent of the classifier weight more effective. We have the
gradient for the classification loss `s(xkn) with respect to

the classifier weight wn: ∂`s(x
k
n)

∂wn
= (P knn − 1)x̃kn, where

P knn = ew
>
n x̃kn/τ∑N

r=1 e
w>
r x̃kn/τ

. The gradient from two views xin

and xjn is

gw =
∂`s(x

i
n)

∂wn
+
∂`s(x

j
n)

∂wn
= (P inn − 1)x̃in + (P jnn − 1)x̃jn.

(6)

According to the law of cosines, ‖x̃in‖2 = 1 , ‖x̃jn‖2 = 1,

‖gw‖22 = (P inn − 1)2 + (P jnn − 1)2

+ 2|(P inn − 1)||(P jnn − 1)|x̃in>x̃jn.
(7)

When the consistency term is included and well-optimized,
x̃in and x̃jn are very close, implying that x̃in

>x̃jn is larger.
In the case P inn and P jnn are not changed, the magnitude
‖gw‖2 is larger, and accordingly the classifier weight wn

is updated effectively and quickly. In contrast, when the
consistency term is not included, x̃in and x̃jn might be very

diverse as discussed (see the discussion in “Optimizing the
classification loss is not direct to optimize the consis-
tency loss.”) This results in that ‖gw‖2 is smaller, and thus
the classifier weight wn is updated less effectively and less
quickly.

Figure 2 shows the final classification loss Ls and con-
sistency loss Lc value with different α. We can see that in-
creasing the consistency weight when smaller than 2.5 helps
optimizing the classification loss, and when larger than 2.5
harms the optimization. In Sec 2 in TechnicalAppendix,
we discuss the reason: over-weighting the consistency loss
could lead to a trivial solution. In our experiments, we set
α to 2.5 in which case the classification loss is minimum.
Optimizing the classification loss is not direct to opti-
mize the consistency loss. Optimizing the classification
loss intuitively expects that each instance lies in a different
region. We expect that the augmented views of an instance
xn are assigned to the nth region and compactly distributed.
We find that merely optimizing Ls is not easy to make the
features of the augmented views of the same instance con-
tractive, thus the features are not compactly distributed.

The reason is that larger similarity between augmented
views is not explicitly encouraged, and is implicitly im-
posed through the classifier weight. The angle between x̃in
and x̃jn, θ(x̃in, x̃

j
n) (reflecting the similarity between x̃in and

x̃jn, θ(x̃in, x̃
j
n)), is upbounded:

θ(x̃in, x̃
j
n) ≤ θ(x̃in,wn) + θ(wn, x̃

j
n). (8)

Minimizing the classifier loss Ls if given wn, it is possible
that the numerators (e.g, w>

n x̃
i
n and w>

n x̃
j
n), are larger and

accordingly the upbound θ(x̃in,wn)+θ(wn, x̃
j
n) is smaller.

However, we find that there exist many transformations R
so that the upbound is the same: w>

n (R x̃in) = w>
n x̃

i
n,

and θ(x̃in,wn) = θ(Rx̃in,wn). In this case, θ(x̃in, x̃
j
n) is

likely to be very different from θ(Rx̃in, x̃
j
n). This implies

that there is still a gap between optimizing the upbound
θ(x̃in,wn) + θ(wn, x̃

j
n) and directly optimizing θ(x̃in, x̃

j
n).

As a result, merely optimizing the classification loss is not
easy to make the features for one instance compactly dis-
tributed in the corresponding region.

3. Experiments
We conduct the evaluation by training the models on Im-

ageNet [13] w/o using the labels. We follow [24] and adopt
two protocols, linear evaluation on ImageNet, and down-
stream task performance with fine-tuning.
Ablation study: consistency. Figure 2 shows how the con-
sistency weight parameter α influences the classification
loss. The results are as our expectation and suggest that the
classification loss decreases when the parameter α increases
to a certain value 2.5 that choose to use in our experiments,
and then the classification loss increases. The results on the
downstream tasks and linear evaluation shown in Table 1

Method
VOC Det. COCO Det. Instance Seg. Semantic Segmentation

VOC07+12 Mask-R 1× City. LVIS City. Stuff ADE VOC Context
APbb APbb50 APbb APmk APmk APmk mIoU mIoU mIoU mIoU mIoU

Exemplar-CNN [16] 53.9 80.1 38.7 35.0 32.4 25.3 77.1 34.0 41.5 77.0 48.6
InstDisc [46] 56.0 81.8 38.8 35.3 31.9 24.6 76.8 33.9 41.3 76.9 49.0
PIRL [34] 55.4 81.0 38.7 35.1 32.2 25.0 75.4 34.1 40.2 75.3 47.6
MoCo v1 [24] 55.9 81.5 39.4 35.6 32.7 25.2 77.5 34.3 41.4 76.2 47.3
MoCo v2 [10] 57.0 82.4 39.7 36.0 33.0 25.6 77.6 35.4 41.6 78.3 50.3
AlignUniform [44] 57.2 82.4 39.7 35.9 33.5 25.6 76.7 35.9 40.7 74.2 50.8
ConIC 57.5 82.4 39.9 36.0 33.6 25.6 78.5 36.0 42.1 78.9 50.9
ConIC w/ sampling 57.3 82.7 39.7 36.0 33.5 25.0 78.2 35.5 41.9 78.5 50.8

Approaches with stronger setup
SwAV [6] 54.9 81.9 40.9 37.0 33.6 25.7 74.8 33.1 42.4 77.3 47.2
InfoMin Aug. [41] 57.6 82.7 40.6 36.7 33.7 25.6 78.2 36.2 42.3 78.7 51.1
SimCLR [9] 39.1 72.2 39.7 36.1 31.5 26.1 59.4 11.1 37.8 32.0 20.2

Table 2: Comparison of our approach ConIC with recent state-of-the-art solutions. We highlight the best and second-best scores among
the approaches w/o strong setup in red and blue, respectively.

M
et

ho
d

C
on

IC

C
on

IC
-S

Lo
ca

l A
gg

.
E-

C
N

N

In
st

D
is

c

PI
R

L

C
M

C

C
PC

v2

M
oC

o
v1

M
oC

o
v2

Si
m

C
LR

A
-U

PI
C

PC
L

v1

PC
L

v2

B
ow

N
et

Se
La

In
fo

M
in

Sw
AV

Si
m

C
LR

B
Y

O
L

#Epochs 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 280 280 800 800 1000 1000

Top-1 acc 67.6 67.4 60.2 64.4 65.1 61.7 66.2 63.8 60.6 67.5 66.6 67.7 67.6 61.5 67.6 62.1 68.8 73.0 75.3 69.3 74.3

Table 3: Comparison for linear evaluation on ImageNet. Our approach gets comparable results to MoCov2, A-U, and others that train
models using similar setup. See Appendix C for more discussions.

indicate consistent observations: the overall performance
when α = 2.5 performs satisfactorily, and better than the
performance w/o consistency (α = 0).
Comparison with state-of-the-arts. We compare our ap-
proach, consistent instance classification (ConIC) to SOTA
solutions. The pretrained models of MoCo v1/v2, Alig-
nUniform, SwAV, and InfoMin are obtained from GitHub
provided by the corresponding authors. The PIRL pre-
trained model is obtained from PyContrast3. We imple-
ment Exemplar-CNN and InstDisc using the same setup
with ours, including `2 normalization and data augmenta-
tion. The models are pretrained with almost the same set-
ting, e.g., #epochs is all 200, data augmentation is almost
the same, the backbone is the same. We fine-tune all the
models using the same setting for the downstream tasks.

The results for downstream tasks are given in Table 2.
The overall performance of our approach (ConIC) is the
best, and the overall performance of our approach w/ sam-
pling classifier weight update4 (ConIC w/sampling) is the
second best. In contrast, the best one among the pre-
vious methods, AlignUniform performs satisfactorily for
most tasks and unsatisfactorily for the segmentation tasks
on Cityscapes, ADE20k, and Pascal-VOC. The superiority
of our approach shows that minimizing the consistency loss
improves the capability of characterizing the objects and the
feature transferability.

3https://github.com/HobbitLong/PyContrast
4To reduce GPU memory consumption, we provide a sampling classi-

fier weight update solution. See Appendix A for details.

In addition, we report the results of three approaches w/
stronger setup, InfoMin, SwAV, and SimCLR. We got the
pretrained models provided by the authors. (1) InfoMin
performs similarly to our approach, but it adopts stronger
augmentation, RandAugment [12]. (2) SimCLR performs
inconsistently and surprisingly poorly5. (3) SwAV performs
much better than our ConIC for COCO detection, and much
worse for VOC detection, and semantic segmentation.

Linear evaluation results on ImageNet are in Table 3.
Our approach performs competitively in comparison to
MoCo v2, PIC, and PCL v2 whose training setup is similar
to our approach. Other approaches, e.g, InfoMin, SwAV,
BYOL, training the models using stronger augmentation,
more views, more epochs, respectively, get higher perfor-
mance. See more analysis in Appendix C.

4. Conclusion
We exploit the consistency loss minimization to help the

optimization of the instance classification loss. The benefits
include: the representations of different views of the same
instance are more compact; the representations of different
distances are more separable; the representations character-
ize more about the textured region. These lead to high ca-
pability on downstream tasks.
Acknowledgments This work was supported in part by
NSFC under Contract 61836011 and 62021001.

5We contacted the authors to see if we use the models correctly for
some downstream tasks, and the feedback is they did not check the perfor-
mance for those downstream tasks.

https://github.com/HobbitLong/PyContrast

References
[1] Yuki M. Asano, Christian Rupprecht, and Andrea Vedaldi.

Self-labelling via simultaneous clustering and representation
learning. In ICLR, 2020. 11

[2] Philip Bachman, R. Devon Hjelm, and William Buchwalter.
Learning representations by maximizing mutual information
across views. In NeurIPS, 2019. 11

[3] Holger Caesar, Jasper R. R. Uijlings, and Vittorio Ferrari.
Coco-stuff: Thing and stuff classes in context. In CVPR,
2018. 10

[4] Yue Cao, Zhenda Xie, Bin Liu, Yutong Lin, Zheng Zhang,
and Han Hu. Parametric instance classification for unsuper-
vised visual feature learning. CoRR, abs/2006.14618, 2020.
9

[5] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning
of visual features. In Vittorio Ferrari, Martial Hebert, Cris-
tian Sminchisescu, and Yair Weiss, editors, ECCV, 2018. 11

[6] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. CoRR,
abs/2006.09882, 2020. 4, 9, 11

[7] Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for semantic
image segmentation. CoRR, abs/1706.05587, 2017. 10

[8] Mark Chen, Alec Radford, Rewon Child, Jeff Wu, Hee-
woo Jun, Prafulla Dhariwal, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In ICML, 2020. 11

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey E. Hinton. A simple framework for contrastive learn-
ing of visual representations. CoRR, abs/2002.05709, 2020.
1, 2, 4, 8, 9, 11

[10] Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming
He. Improved baselines with momentum contrastive learn-
ing. CoRR, abs/2003.04297, 2020. 1, 4, 9

[11] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
2016. 10

[12] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V.
Le. Randaugment: Practical automated data augmentation
with a reduced search space. In CVPRW, 2020. 4

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 3

[14] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsu-
pervised visual representation learning by context prediction.
In ICCV, 2015. 1, 11

[15] Jeff Donahue and Karen Simonyan. Large scale adversarial
representation learning. In NeurIPS, pages 10542–10552,
2019. 11

[16] Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springen-
berg, Martin A. Riedmiller, and Thomas Brox. Discrimi-
native unsupervised feature learning with exemplar convolu-
tional neural networks. TPAMI. 1, 2, 4, 8, 9, 11

[17] Mark Everingham, Luc Van Gool, Christopher K. I.
Williams, John M. Winn, and Andrew Zisserman. The pascal
visual object classes (VOC) challenge. IJCV, 88(2):303–338,
2010. 10

[18] Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick
Pérez, and Matthieu Cord. Learning representations by pre-
dicting bags of visual words. In CVPR, 2020. 8

[19] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. In ICLR, 2018. 1, 11

[20] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-
ersch, B. Á. Pires, Zhaohan D. Guo, M. G. Azar, Bilal Piot,
Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Boot-
strap your own latent: A new approach to self-supervised
learning. CoRR, abs/2006.07733, 2020. 1

[21] Riza Alp Güler, Natalia Neverova, and Iasonas Kokkinos.
Densepose: Dense human pose estimation in the wild. In
CVPR, 2018. 10

[22] Agrim Gupta, Piotr Dollár, and Ross B. Girshick. LVIS: A
dataset for large vocabulary instance segmentation. In CVPR,
2019. 10

[23] Bharath Hariharan, Pablo Arbelaez, Lubomir D. Bourdev,
Subhransu Maji, and Jitendra Malik. Semantic contours from
inverse detectors. In Dimitris N. Metaxas, Long Quan, Al-
berto Sanfeliu, and Luc Van Gool, editors, ICCV, 2011. 10

[24] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross B. Girshick. Momentum contrast for unsupervised vi-
sual representation learning. CoRR, abs/1911.05722, 2019.
1, 2, 3, 4, 7, 8, 9, 10, 11

[25] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.
Girshick. Mask R-CNN. In ICCV, 2017. 10

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 9

[27] Olivier J. Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali
Razavi, Carl Doersch, S. M. Ali Eslami, and Aäron van den
Oord. Data-efficient image recognition with contrastive pre-
dictive coding. CoRR, abs/1905.09272, 2019. 9

[28] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A
fast learning algorithm for deep belief nets. Neural Compu-
tation, 18(7):1527–1554, 2006. 1, 11

[29] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon,
Karan Grewal, Philip Bachman, Adam Trischler, and Yoshua
Bengio. Learning deep representations by mutual informa-
tion estimation and maximization. In ICLR, 2019. 11

[30] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. In ICLR, 2014. 1, 11

[31] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. In ICLR, 2017. 11

[32] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He,
Bharath Hariharan, and Serge J. Belongie. Feature pyramid
networks for object detection. In CVPR, 2017. 10

[33] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in
context. In ECCV, 2014. 10

[34] Ishan Misra and Laurens van der Maaten. Self-supervised
learning of pretext-invariant representations. CoRR,
abs/1912.01991, 2019. 4, 9, 11

[35] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu
Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, and
Alan L. Yuille. The role of context for object detection and
semantic segmentation in the wild. In CVPR, 2014. 10

[36] Mehdi Noroozi and Paolo Favaro. Unsupervised learning
of visual representations by solving jigsaw puzzles. CoRR,
abs/1603.09246, 2016. 1, 11

[37] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor
Darrell, and Alexei A. Efros. Context encoders: Feature
learning by inpainting. In CVPR, 2016. 11

[38] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster R-CNN: towards real-time object detection with re-
gion proposal networks. TPAMI, 39(6):1137–1149, 2017.
10

[39] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In NeurIPS, 2017. 11

[40] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding. CoRR, abs/1906.05849, 2019. 11

[41] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. What makes for good
views for contrastive learning. CoRR, abs/2005.10243, 2020.
4, 9

[42] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. CoRR,
abs/1807.03748, 2018. 11

[43] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. Extracting and composing robust
features with denoising autoencoders. In William W. Co-
hen, Andrew McCallum, and Sam T. Roweis, editors, ICML,
2008. 11

[44] Tongzhou Wang and Phillip Isola. Understanding contrastive
representation learning through alignment and uniformity on
the hypersphere. CoRR, abs/2005.10242, 2020. 1, 4, 8, 9, 11

[45] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 10

[46] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In CVPR, 2018. 1, 2, 4, 9, 11

[47] Xueting Yan, Ishan Misra, Abhinav Gupta, Deepti Ghadi-
yaram, and Dhruv Mahajan. Clusterfit: Improving general-
ization of visual representations. In CVPR, 2020. 11

[48] Mang Ye, Xu Zhang, Pong C. Yuen, and Shih-Fu Chang.
Unsupervised embedding learning via invariant and spread-
ing instance feature. In CVPR, 2019. 1, 11

[49] Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing
Song, and Yi Ma. Learning diverse and discriminative repre-
sentations via the principle of maximal coding rate reduction.
CoRR, abs/2006.08558, 2020. 11

[50] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful
image colorization. In ECCV, 2016. 1, 11

[51] Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain
autoencoders: Unsupervised learning by cross-channel pre-
diction. In CVPR, pages 1058–1067, 2017. 11

[52] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ADE20K dataset. In CVPR, 2017. 10

[53] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local
aggregation for unsupervised learning of visual embeddings.
In ICCV, 2019. 8, 9

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

A. Sampling classifier weight update
The analysis is based on the standard SGD algorithm. For clar-

ity, we assume each iteration samples 1 instance with two aug-
mented views. The analysis can be easily extended to sampling
more instances with more augmented views. The loss function
becomes

L = 2(1− sim(x1
n,x

2
n))−

2∑
k=1

log
ew

>
n x̃kn/τ∑N

j=1 e
w>
j x̃kn/τ

(9)

It can be seen that the denominator in the second term on the right-
hand side,

∑N
j=1 e

w>
j x̃kn/τ , is a summation of N elements, and

thus the complexity is Θ(N). We propose to approximate it by
summing fewer (N ′ = 65536 is the same to the queue size in
MoCo [24]) elements:

ew
>
n x̃kn/τ + β

∑N′

j=1
e
w>
sj

x̃kn/τ (10)

where we let the sampling compensation weight β = N−1
N′ for a

better approximation (See TechnicalAppendix 1.1), which reduces
the forward loss computation complexity to Θ(N ′).

The normal iteration process needs to update all the N clas-
sifier weights in each iteration, implying the complexity is still
Θ(N). Through derivation (see TechnicalAppendix 1.2), we find
that at each iteration we only need to compute the gradients and
update the classifier weights corresponding to the instances that
are sampled. The update of other classifier weights can be delayed
to the iteration that the instances are sampled. Thus, the complex-
ity is reduced to Θ(N ′).

In our implementation, rather than sampling all the N ′ classi-
fier weights at each iteration, we only use the classifier weights,
which correspond to the (e.g., 512) instances in a mini-batch, to
replace the classifier weights that are the earliest sampled. The
potential benefit is to reduce the IO cost if we store the weights
in disk or RAM and only store the sampled weights in the GPU
memory, which is practically valuable for very large scale cases
(e.g., 1B or more images).

A.1. The choice of β
We approximate the part (corresponding to the negative in-

stances) of the denominator in the classification loss Ls =∑2
k=1 log ew

>
n x̃kn/τ∑N

j=1 e
w>
j

x̃kn/τ
, by sampling a subset of classifier

weights. That is

β
∑N′

j=1
e
w>
sj

x̃kn/τ ≈
N∑

j=1,j 6=n

ew
>
j x̃kn/τ . (11)

Assume that the classifier weights corresponding to the (N − 1)
negative instances, {w1, . . . ,wn−1,wn+1, . . . ,wN}, are i.i.d.,
we want that the expectations of the term on the left hand side and
the right hand side are the same:

E[β
∑N′

j=1
e
w>
sj

x̃kn/τ] = E[

N∑
j=1,j 6=n

ew
>
j x̃kn/τ]. (12)

The term on the left hand side is

E[β
∑N′

j=1
e
w>
sj

x̃kn/τ] = βN ′ E[ew
>x̃kn/τ], (13)

where w has the same distribution with wj (j 6= n). Similarly,
the term on the right hand side becomes

E[

N∑
j=1,j 6=n

ew
>
j x̃kn/τ] = (N − 1) E[ew

>x̃kn/τ]. (14)

Thus, we have β = N−1
N′ . During the SGD iterations, the i.i.d. as-

sumption does not hold. But our experiments show that the choice,
β = N−1

N′ , improves the performance, better than β = 1. We think
that tuning β manually might lead to superior performance.

A.2. Delay update of the unsampled classifier
weights

Consider a classifier weight w that is sampled at the (s)th it-
eration and at the (s+ k)th iteration, and is not sampled from the
(s+ 1)th iteration to the (s+ k − 1)th iteration. We have (1) the
gradient of the loss L with respect to w is zero, ∂L

∂w
= 0, (2) the

gradient of the `2 regularizerR = λ
2
‖w‖22 is ∂R

w
= λw, and thus

the gradient becomes: gw(s) = λw.
The update equation of SGD with momentum becomes[
v
(s+1)
w

w(s+1)

]
=

[
m λ

−η(s+1)m (1− η(s+1)λ)

][
v
(s)
w

w(s)

]
, (15)

from which we get:[
v
(s+k)
w

w(s+k)

]
=

[
m λ

−η(s+k)m (1− η(s+k)λ)

]
. . . (16)[

m λ

−η(s+1)m (1− η(s+1)λ)

][
v
(s)
w

w(s)

]
. (17)

This means that we do not need to really compute w at the itera-
tions in which it is not sampled, and only need to update it at the
iteration in which it is sampled again,

In addition, we observe that w (unsampled) is updated inde-
pendently and does not influence the update of other classifier
weights. Consequently, we are safe to delay the update of the clas-
sifier weights that are not sampled to the iteration in which the
weight is sampled again.

A.3. Ablation study on sampling classifier weight
update.

We evaluate how sampling classifier weight update and sam-
pling compensation affect the performance. Figure 3 indicates that
sampling compensation makes the results w/ the sampling scheme
overall similar to the results w/o the sampling scheme and better
than w/o sampling compensation (β = 1).

B. More Analysis
Trivial solution for merely optimizing the consistency loss. Let
us look at the consistency loss

base w/o comp w/ comp
linear evaluation

62

63

64

65

to
p-

1
ac

cu
ra

cy

base w/o comp w/ comp
COCO detection

38.0

38.5

39.0

39.5

40.0

AP
bb

base w/o comp w/ comp
COCO dense pose

63.0

63.5

64.0

64.5

65.0

AP
dp

base w/o comp w/ comp
LVIS

23.5

24.0

24.5

25.0

25.5

AP
m

k

base w/o comp w/ comp
ADE20k

40.5

41.0

41.5

42.0

42.5

m
Io

U

Figure 3: Illustrating the effect of sampling classifier weight update. Three results, the baseline w/o sampling, sampling update w/o
sampling compensation, and sampling update w/ sampling compensation, are reported. The results show that sampling update w/ sampling
compensation performs better than w/o sampling compensation and similar to the baseline w/o sampling.

Lc =
∑N

n=1

∑K

i,j=1,i 6=j
`c(x

i
n,x

j
n)

=
∑N

n=1

∑K

i,j=1,i 6=j
(1− x̃in

>x̃jn)2.
(18)

It is obvious thatLc ≥ 0. We can see that the minimumLc = 0
holds, if the features of all the augmented views for an image are
the same: x̃in = x̃jn. It also holds in theory when that different im-
ages can have different representations: x̃in 6= x̃jm. However, we
empirically observe that merely optimizing the consistency loss
always leads to the trivial solution: the representations of all the
augmented views for all the images are the same, x̃in 6= x̃jm.

Hard sample mining. It is known that the softmax loss has a
benefit: hard samples contribute more to the gradient and thus the
parameter update. We show that the consistence term has a similar
property. The gradient of the consistence term `c in

`c(x
i
n,x

j
n) = (1− sim(xin,x

j
n))2 = (1− x̃in

>x̃jn)2. (19)

with respect to x̃in is

∂`c
∂x̃in

= −2(1− x̃in
>x̃jn)x̃jn. (20)

In the hard sample case, the similarity x̃in
>x̃jn is smaller and far

from 1, (1− x̃in
>x̃jn) is larger, implying the gradient magnitude is

larger. This means more contribution to the gradient. In the easy
sample case, the contribution would be smaller.
Batch size. We present rough analysis showing that instance clas-
sification, including our approach, MoCo, and InstDisc, does not
require large batch (see [24] and the empirical validation in Fig-
ure 4 for our approach). We rewrite the loss function in Equation 5
as

L =
∑N

n=1
[α

∑K

i,j=1,i 6=j
(1− sim(xin,x

j
n))2

+
∑K

k=1
log

ew
>
n x̃kn/τ∑N

j=1 e
w>
j x̃kn/τ

].
(21)

The reformulation indicates that the loss can be decomposed to
the sum of components, where each component depends on a dif-
ferent instance. The separation between instances is got through
the classifier weights each of which encodes the information of
the corresponding instance. The decomposability property leads
to that the optimization of L using SGD behaves similarly to the
classification problem with SGD: large batch size is not necessary.
Figure 4 shows that the performances with batch sizes 256, 512
and 1024 are similar.

(a)
64 128 256 512 1024

batch size
62.0

62.5

63.0

63.5

64.0

64.5

65.0

65.5

to
p-

1
ac

cu
ra

cy

(b)
64 128 256 512 1024

batch size
81.0

81.2

81.4

81.6

81.8

82.0

82.2

82.4

VO
C

AP
50

Figure 4: Performance with different batch sizes: (a) Linear eval-
uation on ImageNet, and (b) VOC detection. The performances
with batch sizes 256, 512 and 1024 are similar.

In contrast, the contrastive loss over all theN instances in Sim-
CLR, is

L =
∑N

n=1
(log

ex̃
1
n
>x̃2

n/τ∑N
j=1 e

x̃1
n
>x̃1

j/τ + ex̃
1
n
>x̃2

j/τ

+ log
ex̃

2
n
>x̃1

n/τ∑N
j=1 e

x̃2
n
>x̃1

j/τ + ex̃
2
n
>x̃2

j/τ
).

(22)

We can see that this can not be decomposed as a sum of com-
ponents each of which depends on a different instance, which is
a general requirement for SGD. Each instance depends on other
instances. We believe that this is the reason why SimCLR needs
large batch size [9].

C. Additional experiment results
C.1. Results on more downstream tasks

Table 4 shows the comparison of our ConIC with recent state-
of-the-art solutions.

C.2. Results of other methods

The abbreviations in Table 3 in the main manuscript are ex-
plained in the following: ConIC-S = ConIC w/ sampling, Local
Agg. = Local Aggregation [53]. E-CNN = Exemplar-CNN [16].
A-U = AlignUniform [44]. BowNet = [18].

Table 5 shows the results of on VOC object detection form
some other methods that are not included in Table 2 of the main
manuscript. The results are got from the corresponding papers.
BYOL, PCL, BowNet, SeLa adopted different evaluation setups
and thus their results are not reported. Because of time limita-
tion, currently we are not able to re-implement these algorithms or
use their provided pretrained models and evaluate them on other
downstream tasks.

Method Semantic Segmentation Instance Seg. COCO Keypoint
City. Stuff ADE VOC Context City. LVIS APkp APkp50

Exemplar-CNN [16] 77.1 34.0 41.5 77.0 48.6 32.4 25.3 66.1 87.2
InstDisc [46] 76.8 33.9 41.3 76.9 49.0 31.9 24.6 65.8 86.9
PIRL [34] 75.4 34.1 40.2 75.3 47.6 32.2 25.0 66.2 86.9
MoCo v1 [24] 77.5 34.3 41.4 76.2 47.3 32.7 25.2 66.3 87.0
MoCo v2 [10] 77.6 35.4 41.6 78.3 50.3 33.0 25.6 66.5 87.5
AlignUniform [44] 76.7 35.9 40.7 74.2 50.8 33.5 25.6 66.4 87.3
ConIC 78.5 36.0 42.1 78.9 50.9 33.6 25.6 66.5 87.3
ConIC w/ sampling 78.2 35.5 41.9 78.5 50.8 33.5 25.0 66.2 87.2

Approaches with stronger setup
SwAV [6] 74.8 33.1 42.4 77.3 47.2 33.6 25.7 65.7 86.7
InfoMin Aug. [41] 78.2 36.2 42.3 78.7 51.1 33.7 25.6 66.5 87.5
SimCLR [9] 59.4 11.1 37.8 32.0 20.2 31.5 26.1 65.3 86.8

Method
VOC Detection COCO Detection DensePose

VOC07 VOC07+12 Mask-R 1× Mask-R 2× DP-RCNN
APbb APbb50 APbb APbb50 APbb APmk APbb APmk APdp

Exemplar-CNN [16] 47.1 75.0 53.9 80.1 38.7 35.0 41.4 37.4 64.4
InstDisc [46] 46.9 75.1 56.0 81.8 38.8 35.3 41.4 37.4 64.0
PIRL [34] 45.9 73.9 55.4 81.0 38.7 35.1 41.4 37.4 64.3
MoCo v1 [24] 46.6 74.9 55.9 81.5 39.4 35.6 41.7 37.5 64.3
MoCo v2 [10] 48.2 76.3 57.0 82.4 39.7 36.0 41.9 37.8 65.1
AlignUniform [44] 48.6 77.0 57.2 82.4 39.7 35.9 41.9 37.8 64.6
ConIC 48.8 76.8 57.5 82.4 39.9 36.0 41.9 37.9 64.9
ConIC w/ sampling 48.8 76.5 57.3 82.7 39.7 36.0 42.0 37.9 64.8

Approaches with stronger setup
SwAV [6] 42.5 75.0 54.9 81.9 40.9 37.0 42.7 38.5 62.6
InfoMin Aug. [41] 48.6 77.0 57.6 82.7 40.6 36.7 42.5 38.4 65.6
SimCLR [9] 25.5 56.8 39.1 72.2 39.7 36.1 42.2 38.2 62.7

Table 4: Additional results on comparison of our approach ConIC with recent state-of-the-art solutions. We highlight the best and second-
best scores among the approaches w/o strong setup in red and blue, respectively.

Table 5: VOC object detection results for other methods that are
not included in Table 2 of main manuscript.

Method
VOC Detection

VOC07 VOC07+12
APbb APbb50 APbb APbb50

Local Aggregation [53] 69.1
PIC [4] 57.1 82.4
CPC v2 [27] (R-161) 76.6
ConIC 48.8 76.8 57.5 82.4
ConIC w/ sampling 48.8 76.5 57.3 82.7

D. Visualization of activation maps
We observed that jointly optimizing the consistency and classi-

fication losses leads to that the representation is more focused on
the textured region, as shown in Figure 5. This implies that the
learned representation is more capable of characterizing the ob-
jects, and thus potentially more helpful for downstream tasks like
object detection and segmentation.

E. Implementation Details
Data augmentation. We adopt the augmentation scheme similar
to SimCLR [9]. We randomly crop the input image with the crop
scale (0.15, 1) and resize it to 224× 224. Then we apply random
horizontal flipping, color jittering, grayscale, and Gaussian blur.

We provide the PyTorch pseudo code of the data augmentation
we adopted, as follows:

1 augmentation = [
2 transforms.RandomResizedCrop(224, scale

=(0.15, 1.)),
3 transforms.RandomHorizontalFlip(),
4 transforms.RandomApply([
5 transforms.ColorJitter(0.8, 0.8, 0.8,

0.2)
6], p=0.8),
7 transforms.RandomGrayscale(p=0.2),
8 transforms.RandomApply([GaussianBlur([.1,

2.])], p=0.5),
9 transforms.ToTensor(),

10 normalize]

Network architecture. We use ResNet-50 [26] to extract fea-
tures. Following SimCLR we adopt the same projection head
consisting of a two-layer batch-normalized MLP (Linear→BN→
ReLU→Linear→BN) and reduce the feature dimension from
2048 to 128 in pretraining.
Training. We use the SGD with momentum optimizer. We set the
momentum to 0.9, the weight decay to 1e − 4, the batch size to
512, and the epoch number to 200. We adopt the cosine learning
rate schedule, with the initial learning rate 0.06. Each instance in
the current mini-batch is augmented into two views during train-
ing. The temperature τ is set to 0.1. We use SyncBN. For ablation
study, we train all the models for 100 epochs. The training is per-

(a)

(b)

(c)

Figure 5: Visualizing the activation maps. (a) input image, (b) activation maps from our approach, (c) activation maps from only optimizing
the classification loss. One can see that our approach (b) tends to more focus on the textured region.

formed on 8 NVIDIA V100 GPUs.

F. Evaluation setup
F.1. Evaluation on downstream tasks

We perform object detection, COCO keypoint detection,
COCO DensePose estimation and Instance segmentation experi-
ments on Detectron2 [45] framework.

Object detection. We perform object detection on Pascal
VOC [17] and COCO [33] datasets. For Pascal VOC, we use
Faster-RCNN [38] with R50-C4 backbone as the detector. Fol-
lowing [24], extra BNs are added in newly initialized layers. We
fine-tune all layers (including BN layers) in object detection ex-
periments. Initial learning rate is 0.02. Two training schemes are
adopted: (i) the model is trained on train2007 set for 9k it-
erations, with learning rate decay at 6k and 8k iteration. (ii) the
model is trained on trainval07+12 set for 24k iterations, with
learning rate decay at 18k and 22k iterations. We report APbb50 and
standard COCO-style APbb. For COCO object detection, we use
Mask-RCNN [25] with R50-FPN [32] backbone as the detector.
SyncBN is adopted in backbone, FPN and ROI Heads. The model
is fine-tuned on train2017 set and evaluated on val2017 set.
We use standard 1× and 2× fine-tune schedule. Standard COCO-
style bounding box APbb and mask APmk are reported.

COCO keypoint detection. We perform human pose estimation
on COCO keypoint [33] dataset. We use Mask-RCNN [25] (key-
point version) with R50-FPN backbone as the detector. SyncBN is
adopted in backbone, FPN and ROI Head. The model is fine-tuned
on train2017 set and evaluated on val2017 set. Standard 2×
fine-tune schedule is applied. We report APkp and APkp50 .

COCO DensePose estimation. For DensePose [21] estimation,
We use DensePose R-CNN with R50-FPN backbone. SyncBN
is adopted in backbone, FPN and ROI Box Head. The model
is trained on train2014 + valminusminival2014 and
evaluated on minival2014. We use ”s1×” fine-tune schedule
(improved baseline “R 50 FPN s1x” in Detectron2). We report
APdp of DensePose GPS metric.

Instance segmentation. We perform instance segmentation on
COCO [33], Cityscapes [11], and LVIS [22] datasets. COCO
instance segmentation is jointly-trained with COCO object de-

tection with Mask-RCNN model. We use Mask-RCNN with
R50-FPN for fine-tuning. SyncBN is adopted in backbone,
FPN and ROI Heads. For Cityscapes, the model is trained on
cityscapes fine instance seg train and evaluated on
cityscapes fine instance seg val for 24k iterations.
For LVIS, the model is trained on lvis v0.5 train and eval-
uated on lvis v0.5 val with 2× schedule. Standard APmk is
reported.

Semantic segmentation. We perform semantic segmentation on
Cityscapes [11], COCO-stuff [3], ADE20k [52], Pascal-VOC [17],
and Pascal-Context [35] datasets. We use DeeplabV3 [7] with
R50-dilated8 backbone. We use SGD with momentum optimizer
and lambda poly learning rate schedule for semantic segmenta-
tion experiments. We employ cross entropy loss on both the fi-
nal output of DeeplabV3 and the intermediate feature map out-
put from stage3, where the weight over the final loss is 1 and the
auxiliary loss is 0.4. Single-scale testing is adopted for all exper-
iments. For Cityscapes experiments, we train the model for 40k
iterations with batch size 8, initial learning rate 0.01, input size
1024 × 512. For COCO-stuff experiments, we train the model
for 60k iterations with batch size 16, initial learning rate 0.01,
input size 520 × 520. For ADE20k experiments, the model is
trained for 150k iterations with batch size 16, initial learning rate
0.02, input size 520× 520. For Pascal-VOC experiments, we use
train aug2012 set (augmented by [23]) as training set. The
model is trained for 60k iterations with batch size 16, initial learn-
ing rate 0.001 and input size 513 × 513. For Pascal-Context ex-
periments, the model is trained for 30k iterations with batch size
16, initial learning rate 0.001 and input size 520× 520. Standard
mIoU metric is reported.

F.2. Linear evaluation

We freeze the pretrained backbone and train a linear classifier
on the frozen feature. The classifier is trained for 100 epochs with
initial learning rate 75 and a cosine learning rate schedule. We set
weight decay to 0. The data augmentation is the same as super-
vised ImageNet classification.

G. Implementation details of the toy example
Figure 1 shows the learned feature distributions for 2D toy ex-

amples. We train the models (with a ResNet-50 encoder) on a toy
dataset, containing 8 ImageNet images. We apply RandomCrop
(0.7,1) on the images to generate augmented views. The models
are trained for 200 epochs with a cosine schedule and initial learn-
ing rate 0.0001. We use batch size 8 and weight decay 1e − 6.
The dimension of features output from projection head is 2. For
the classification only experiment, we set α = 0. For the jointly
optimization of the consistency loss and classification loss, we set
α = 0.1. After training, the learned features of 20 random aug-
mented views of each image are recorded. We apply kernel density
estimation with a Gaussian kernel of std 0.04 on the recorded fea-
tures for visualization. Each color represents the learned feature
distribution of augmented views from an image.

H. Related Work
Generative approaches. Generative models, such as auto-
encoders [28, 30, 43], context encoders [37], GANs [15], and
GPTs [8], learn an unsupervised representation by faithfully re-
constructing the pixels. Later self-supervised models, such as col-
orization [50] and split-brain encoders [51], improve generative
models by withholding some part of the data and predicting it.
Spatial relation prediction. The representation is learned by
solving pretext tasks related to image patch spatial relation predic-
tion, such as predicting the spatial relation between two patches
sampled from an image, e.g., a patch is on the left of another
patch, [14]; solving Jigsaw Puzzles and determining the spatial
configuration for the shuffled (typically 9) patches [36]; and pre-
dicting the rotation [19].
Instance classification/clustering. Exemplar-CNN [16] regards
the views formed by augmenting each instance as a class, and
formulates an instance classification problem. InstDisc [46],
MoCo [24], CMC [40] and PIRL [34] generalize exemplar-CNN
by heuristically estimating the classifier weights using prototypes
to ease the optimization. Rather than regarding each instance as
a category, clustering methods [5, 6, 1, 47] simultaneously learn
representations and cluster the data. Our proposed approach fol-
lows the instance classification approach, and exploit an additional
consistency loss to help optimization.
Contrastive learning. CPC [42] predicts the representations of
patches below a certain position from those above it by optimizing
contrastive loss. DIM [29] and ANDIM [2] achieves global-to-
local/local-to-neighbor patch representation prediction (overlap-
ping) across augmented views using the contrastive loss.

[48, 9] formulate a contrastive loss encouraging the high sim-
ilarity between the augmented views from the same instance, and
low similarity between the instance and other instances. [44, 49]
present novel formulations and shows that it an alternative of con-
trastive loss.
Consistency in semi-supervised learning. Consistency regular-
ization, enforcing the similarity between the predictions or fea-
tures of different views for the same unlabeled instance, has been
widely applied in semi-supervised learning, such as Π Model [31],
Temporal Ensemble [31], and Mean Teacher [39]. We exploit the
consistency loss to help optimize the classification loss for unsu-
pervised representation learning.

