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Abstract

SODA10M is the first large-scale object detection bench-
mark for autonomous driving, which aims at facilitating a
safe, ever-evolving and robust autonomous driving system.
Despite the large amount of data acquired, rare annotations
are available. Semi-supervised learning methods can help
to get use of extensive existing data resources and reduce
the cost of manual labeling, which is of great significance
for visual scene understanding. In this work, we propose
a simple yet efficient semi-supervised learning framework
and a reliable pseudo-labels generation strategy for object
detection. To begin with, a well-trained powerful teacher
model has been obtained by the ensemble learning strategy,
which unlabeled images could apply to produce excellent
pseudo-labels for self-training. The experimental results
show that our method achieves the third place on ICCV2021
SSLAD challenge track 1 (mAP is 81.27).

1. Introduction

Autonomous driving [9] means that the vehicle perceives
the surrounding environment through sensors, and changes
the driving behavior in real time to complete the driving task
without human intervention. Autonomous driving can re-
duce the occurrence of traffic accidents, increase the utiliza-
tion rate of road traffic resources, and save residents’ travel
costs. Therefore, the research on autonomous driving tech-
nology is of great significance. Autonomous driving tech-
nology based on computer vision uses observation images
of visual sensors as input and driving actions as output. As
an essential module in the visual perception system, object
detection in road images plays one of the most critical roles
for autonomous driving. Performances of current object de-
tection approaches, however, may be limited by the cur-
rently available datasets, due to the drawbacks of existing
benchmarks. These limitations include the lacking diver-
sity of data sources and limited labeled datasets. To boost

the development of real-world autonomous driving systems,
the first and largest-scale object detection benchmark for
autonomous driving (SODA10M) [6] was developed, which
contains 10 million road images. The SODA10M data set
can be distinguished from the existing data set in terms of
scale, diversity and generalization. This benchmark was
used to hold the ICCV2021 SSLAD Challenge, which aims
to investigate the current methods for constructing the next-
generation of industrial-level autonomous driving systems
by self-supervised and semi-supervised learning.

With the development of deep learning, various object
detection algorithms have been proposed. Existing object
detectors are mostly categorized by whether they have a
region-of-interest proposal step (two-stage) [17, 5, 20, 3] or
not (one-stage) [14, 16, 2, 11, 10]. Recently, following the
one-stage detector design, YOLO series [14, 16, 2, 15, 1]
have attracted substantial attention due to their efficiency
and simplicity. They extract the most advanced detection
technologies available at the time (e.g., the SPP module [7]
for YOLOV3, Mish [13] activation for YOLOv4) and opti-
mize the implementation for best practice. Hence, we se-
lected Scaled-YOLOV4 as our baseline model.

Semi-supervised learning (SSL) [21] has received grow-
ing attention in recent years as it provides means of using
unlabeled data to improve model performance when large-
scale annotated data is not available. The majority of the re-
cent SSL methods typically consist of input augmentations
, perturbations, and consistency regularization. They regu-
larize the model to be invariant and robust to certain aug-
mentations on the input, which requires the outputs given
the original and augmented inputs to be consistent. In this
work, we propose a simple yet efficient SSL framework
based on YOLO for object detection. As shown in Figure
1, we first obtain 5 models through ensemble learning, and
then use them to predict 160k unlabeled data. The Relia-
bility Pseudo-labels Generation (RPG) strategy is used in
the prediction process. After obtaining approximately 12k
high-quality pseudo-labels, we add them to the abeled data
for self-training until the model converges. Then we use the
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Figure 1. The whole Semi-Supervised Learning Framework

convergent model to re-predict the unlabeled data, and also
use the RPG strategy to obtain higher-quality pseudo-labels
for self-training. Repeat the above process until the labeled
data is fully utilized.

2. Methods
2.1. Ensemble Learning for Supervised Stage

In the ICCV2021 SSLAD Challenge Trackl - 2D object
detection, only 10k fully-annotated training sets and vali-
dation sets are provided. Due to limited annotated sam-
ples, how to train an excellent teacher model which unla-
beled data can apply to generate high-qualified pseudo la-
bels has become the basis of semi-supervised training meth-
ods. Based on this consideration, we adopt the idea of en-
semble learning [4]. That is, we first randomly shuffle the
10k labeled data, and then split them into 5 data sets. When-
ever one of them is selected as the validation set, the remain-
ing four data are integrated into the training set. After this
data division method, the samples obtained (s1, s2, s3, s4,
s5) are respectively subjected to supervised training, and the
model selects Scaled-YOLOv4p7.

2.2. Reliable Pseudo-labels Generation

The current popular semi-supervised object detectors,
such as STAC [18] and Unbiased teacher [12], all use a fixed
confidence threshold to filter out prediction boxes with low

confidence. But they do not consider that the sensitivity of
each category to the confidence threshold may vary greatly.
For example, category 3 (car) in the SODA10M data is not
sensitive to the confidence threshold, that is, this category
can be filtered with a larger threshold; while category 6
(tricycle) is very sensitive to the confidence threshold, so
it needs to use a smaller threshold to filter.

In the RPG process, the five models obtained in the pre-
vious stage are firstly multi-scale predicted separately, and
then the predictions of multi-scales of each model are fused
by Weighted Boxes Fusion (WBF) [19], after which the
fused results are then WBF processing is performed to ob-
tain preliminary reliable pseudo-labels.

The computational cost of using these unlabeled images
directly is obviously too high, so we perform image-level
selecting and prediction box-level selecting successively.
In image-level selecting, we set the image-level confidence
threshold for each category of the 160k prediction results,
that is, take the maximum value of the confidence of each
category of each image, and retain a certain number of im-
ages by a certain confidence threshold. Similar to the op-
eration in image-level selecting, in prediction box-level se-
lecting, we set prediction box-level confidence threshold for
each category of the prediction boxes in the retained im-
ages, and then retain a certain number of prediction boxes
by a certain confidence threshold.
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| pedestrian | cyclist | car | truck | tram | tricycle |

Threshold on image level
Threshold on bounding-box level

0.938 0.955 | 0.98 | 0.968 | 0.968 | 0.7
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Table 1. The Selecting Thresholds on image level and bounding-box level.

| | first | +s1 | +s2 | +s3 \ +s4 | +s5 | GPU days |
YOLOR-P6 0.559 | 0.601 | 0.625 | 0.638 | 0.644 | 0.649 | 0.62x4
Scaled YOLOv4p7 | 0.595 | 0.622 | 0.634 | 0.641 | 0.650 | 0.655 | 3.21x4

Table 2. The local evaluation of some models after training through our simple yet efficient semi-supervised learning framework.

2.3. Self-training for Semi-supervised Stage

In STAC, the pseudo-labels used by the student is
fixed. When the student is gradually improving, the im-
mutable pseudo-labels will obviously drag down the stu-
dent’s progress. In order to solve this problem, Unbiased
teacher gradually transfers the weight of the student to up-
date the teacher via Exponential Moving Average (EMA)
[8]. With the improvement of detection accuracy, the
teacher can generate more accurate and stable pseudo-labels
to optimize the student. The two models can continuously
evolve together to improve the accuracy of detection. Ob-
viously, an immutable teacher will hinder the progress of
Student, but a constantly changing teacher may also mis-
lead student. Therefore, we used a compromise solution.
We first combine the 12k high-quality pseudo-labels ob-
tained in Section 2.2 with the sample sl in Section 2.1 to
train until the model converges, and then re-process the
converged model through RPG. After that, the processed
higher-quality pseudo-labels and the sample s2 are jointly
trained until the model converges, and this process is re-
peated until the labeled data is fully utilized. In this process,
our teacher model has been updated 4 times, which is very
helpful for guiding the student model correctly and stably.

3. Experiments
3.1. Implement Details

In the supervised training phase, We do not use Ima-
geNet pre-trained models, and all scaled-YOLOv4 models
are trained from scratch and the adopted tool is SGD op-
timizer. For the first-generation teacher model, we choose
Scaled-YOLOv4p7. We first use weak data augmentation
methods (rotation, translation, flip, or color jittering) to train
200 epochs, and then followed by using stronger data aug-
mentation methods (Mosaic, Mixup) to train 100 epochs.

In the process of Reliable Pseudo-labels Generation, the
size of multi-scale prediction is [1536, 1664, 1792, 1920,
2048], the weight of multi-scale fusion is 1, 2, 3, 2, 1,
and the weight of multi-model fusion is 1, 1, 1, 1, 1. The
image-level selecting threshold and the prediction box-level
selecting threshold will vary with the update of the teacher
model and the number of unlabeled images that need to be

retained. Table 1 is the threshold table under the condition
of the initial teacher model and 12k unlabeled images.

In the self-training phase, we first perform 3 epochs
warm-up training. During the warm-up process, the mo-
mentum of the optimizer SGD is set to 0.8, and one-
dimensional linear interpolation is used to update the learn-
ing rate of each iteration. After warm-up training, the co-
sine annealing function is used to attenuate the learning
rate, where the initial learning rate is 0.02, and the mini-
mum learning rate is 0.2*%0.01. The time for self-training
is 200 epochs. During training, strong and weak data aug-
mentation strategies are used, with a probability of 0.5. The
weight decays are set to 5104. All experiments were per-
formed with 4 Tesla V100.

3.2. Evaluation Metrics

For this task, SODA10OM use Mean Average Preci-
sion(mAP) in COCO API among all categories as evalua-
tion metric, that is, the mean over the APs of pedestrian, cy-
clist, car, truck, tram and tricycle. The IoU overlap thresh-
old for pedestrian, cyclist, tricycle is set to 0.5, and for car,
truck, tram is set to 0.7.

3.3. Experimental Results

["Model [AP_ [ AP0 |
YOLOR-P6 0.559 | 0.763
YOLOR-W6 0.556 | 0.756
YOLOR-E6 0.571 | 0.783
YOLOR-D6 0.576 | 0.792
Scale-YOLOv4p5 | 0.577 | 0.791
Scale-YOLOv4p6 | 0.583 | 0.796
Scale-YOLOv4p7 | 0.595 | 0.801

Table 3. The local evaluations based on the 7 first-generation
teacher models under the s1 data set.

Table 3 shows the local evaluations based on the 7 first-
generation teacher models under the s1 data set. The re-
sults show that Scaled-YOLOv4p7 has achieved the best
performance. Table 2 shows the local evaluation of some
models after training through our simple yet efficient
semi-supervised learning framework. The results show
that Scaled-YOLOv4p7 achieves the best performance, but



YOLOR-P6 demonstrates significant ability to learn infor-
mation from unlabeled data and ultimately achieves simi-
lar performance to Scaled-YOLOv4p7. If the cost of train-
ing time is considered, YOLOR-P6 would be the most cost-
effective model.

4. Conclusion

This report details the key technologies used in
ICCV2021 SSLAD challenge track1-2D object detection.
Inspired by STACUnbiased teacher, we propose a simple
yet efficient semi-supervised object detection framework
based on YOLO and a reliable pseudo-label generation
strategy. Experiments show that our approach makes effi-
cient use of unlabeled data while making full use of labelled
data, and this approach progressively updates the original
detector to improve accuracy and robustness. In the end,
after multi-model fusion, we achieved the third place with
mAP of 81.27.
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