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Abstract

This report introduces our solution for the ICCV 2021
Workshop SSLAD Track 1 - 2D Object Detection. The
goal of Semi-Supervised Object Detection (SS-OD) is to
train a detector that exploits large amounts of unlabeled
data with only a few data labeled. Till now, related meth-
ods can be roughly divided into self-training based meth-
ods and consistency-regularization based methods. In this
work, we combined the above mentioned methods and pro-
posed a holistic framework named O20 (Offline to Online)
for the SS-OD problem. We adopted Cascade R-CNN with
the Swin-Transformer backbone as our detector for training
on the SODA10M dataset. In virtue of the proposed SS-OD
method, our best single model could reach an mAP of 81.35.
With ensembles, we further improved the final mAP in the
public leaderboard to 81.79 and achieved 2nd place in the
SSLAD Track 1 challenge.

1. Introduction

The SSLAD 2D Object Detection challenge in ICCV
2021 is a 2D object detection task for autonomous driv-
ing. A large-scale dataset called SODA10OM [5]] with 10
million unlabeled images in total is provided. For labeled
set, SODA10M annotates 5K images for training, 5K im-
ages for validation, and 10K images for testing. The main
task of this track is to exploit the massive unlabeled data to-
gether with labeled images to improve the performance and
generalize on the test set. A straightforward way to address
this challenge is to adopt Semi-Supervised Object Detection
(8S-0OD) methods.

methods with a self-training patternWhile semi-
supervised learning has been widely explored in image
classification tasks [[11} [13]], few works have been focused
on object detection due to the difficulty of localizing
and regressing the location of each object on images.
Recent SS-OD methods can be roughly divided into
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self-training based methods and consistency-regularization
based methods. The self-training based methods [12]
generate pseudo labels from a pre-trained model and then
train the detector jointly with unlabeled and labeled data.
We name those methods with a self-training pattern as
offline methods, as the pseudo labels are fixed during
the semi-supervised training process. On the other head,
consistency-regularization based methods [8, [15] dynami-
cally generate pseudo labels or regularize the consistency
of outputs with different data transformations. Most of
them are in a Teacher-Student pattern with the teacher
model updated via Exponential Moving Average (EMA) of
student weights. Those methods are named Online methods
as the predictions vary through iterations.

The different training patterns endue those methods with
different characteristics. We argue that while pseudo la-
bels generated by offline methods can be of high quality,
the gain margin is limited with fixed predictions. For on-
line methods, the model outputs gradually evolve through
time if trained properly although the performance can be
inferior in the early training stage. It’s validated that self-
training based methods showed inferior performance than
consistency-regularization based methods and the perfor-
mance couldn’t improve with an increased amount of unla-
beled images in experiments [5]. Therefore, we proposed a
holistic SS-OD framework called O20 (Offline to Online)
to combine the advantages of above mentioned methods.
We train our model in the following steps: 1) train a baseline
detector on labeled images, 2) first utilize the fixed pseudo
labels generated on unlabeled images by the baseline de-
tector to train the student detector, and then 3) switch to
Teacher-Student training pattern after a period of iterations.
Also, we can repeat the process a few times to further im-
prove the performance as the work [14].

As in a 2D object detection task, it’s equally important to
design a strong detector for training on limited labeled im-
ages so that it can generalize well on unseen unlabeled data.
We adopted Cascade R-CNN [2] with Swin Transformer
[9]] as backbones. Swin Transformer recently refreshes the
SOTA results of multiple computer vision tasks including



object detection and enables us to have a strong detection
baseline as well as generate high-quality pseudo labels. To
summarize our whole solution:

¢ Strong Detector: We adopted Cascade R-CNN with
Swin Transformer backbones, which provides a strong
baseline and generalizes well on unseen images.

* 020 Framework: We proposed an SS-OD frame-
work named as O20 combining the advantages of
self-training based methods as well as consistency-
regularization based methods to improve the detection
performance.

* Auto Ensemble: We adopted a search-based ensemble
mechanism to aggregate predictions by different detec-
tors automatically.

2. 2D Object Detection

We use two-stage Cascade R-CNN [2] as our detector
and adopted Swin Transformer [9]] as the backbone feature
extractor. The task of this challenge is to exploit massive
unlabeled data with limited labeled images and we assume
that the diversity of model architectures won’t contribute
much to achieving an impressive performance.

Basic Architecture. The detector architecture we use is
the same as that of the original paper. It should be noticed
that when training on only labeled images to get a baseline
detector, we add auxiliary mask heads like HTC [3] did to
help improve the detection performance by learning hybrid
tasks. The fed masks are forged by simply filling pixels
within annotated bounding boxes and this design gives us a
0.75% boost in mAP. In semi-supervised training, the mask
heads are removed to reduce GPU memory usage. Other
improvements such as replacing the L1 loss with GIoU loss
[[10]] also work well in our training.

Data Augmentation. With limited labeled images and
complex driving scenes, overfitting is introduced unavoid-
ably in this task. Except for standard augmentation strate-
gies such as multi-scale training and flip, we also use more
radical augmentations like color jitters and MixUp [16].
Those augmentations are helpful especially for adjusting to
lighting changes in different scenes and detecting blocked
objects. Other techniques like Copy-Paste [4]] and Mosaic
augmentations [[L] couldn’t lead to stable improvements.

TTA and Multi-class NMS. We empirically adopted
standard test-time augmentation strategies, including multi-
scales and image flip. The chosen scale ratios are
1.0,1.1,1.2, and thus the TTA results are the average of
6 predictions in total. In the post-processing stage of object
detection, NMS or soft-NMS is commonly used to filter in-
valid bounding boxes. We’ve found in our experiments that
direct use of soft-NMS increases the final mAP by a minor
improvement. The performance of pedestrian, cyclist, and

tricycle actually degrades with the use of soft-NMS while
the mAP of remaining threes increase. After analyzing, we
assume that soft-NMS could retrieve more miss detections
for categories with a higher IoU threshold, which is 0.7 for
car, truck, and tram. While soft-NMS would lead to more
false detections for categories with a 0.5 IoU threshold, we
merge the post-processing results of soft-NMS and NMS.
This gives us a 0.3 ~ 0.4% boost in mAP.

3. 020 SS-OD Framework

Our SS-OD framework is shown in Figures [I|and we’ve
divided the whole training process into three different parts.

3.1. Stage-0: Baseline Training

This stage refers to training on labeled images to offer a
good initialization for semi-supervised training as well as
high-quality offline pseudo labels. In this stage, we add
auxiliary mask heads to help learn latent knowledge and
remove those heads in all other stages. For labeled data
D, = {x3,y5}Y:,, we follow standard training schemes
and the supervised loss consists of three parts:

L= Z [/T'pn(wfv yf) + L"v'oi(wf7 yf) + Lonask ($f> yf) (D

The loss L,y and L,.,; both include regression loss and
classification loss. The trained weights 6 would be loaded
for student model 6, and teacher model 6; in the next stage
of training.

3.2. Stage-1: 020 Semi-Supervised Training

To exploit large amounts of unlabeled images, we pro-
posed O20 semi-supervised framework to combine offline
and online methods. Offline pseudo labels generated by the
baseline detector are first used to stabilize the model per-
formance. As the training processes, the model could no
longer learn useful knowledge from fixed pseudo labels and
then we switch to a teacher-student pattern to continue train-
ing with the help of online pseudo labels.

Data Selection. Considering 10 million unlabeled im-
ages are available, we’ve tried different strategies to sample
unlabeled data with a fixed amount to maximize the semi-
supervised performance, such as sample uniformly from
different annotated tags, but found out that random sam-
pling is good enough for training. With collected data, we
sample the labeled and unlabeled images separately to bal-
ance the ratio of those two in a single batch so that the train-
ing performance won’t be affected much by the errors in
pseudo labels. Especially, the sampling ratio 1 : 1 is used,
which means that the labeled set would be iterated much
more times than the unlabeled set.

Offline Pseudo Labels. To get high-quality pseudo la-
bels, we use TTA strategy mentioned in section [2] to boost
the accuracy. To prevent the detrimental effects introduced
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Figure 1. 020 Semi-Supervised Object Detection framework.
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Figure 2. Recalls and precisions for each category under different
confidence thresholds.

by noisy pseudo labels, it’s critical to set a proper confi-
dence threshold o to filter false detections with low con-
fidence, while keeping sufficient positive detections. We
analyze the recalls and precisions for categories under dif-
ferent score thresholds as shown in Figure[2] The tendency
of recalls and precisions become steady with the increase of
the confidence threshold and we simply choose 0.5 as the
threshold for offline pseudo labels as we find that further
tuning the parameters only brings negligible improvements.

Online Pseudo Labels. When generating online pseudo
labels, we adopt a teacher-student pattern where the teacher
model is updated by the exponential moving average of the
student model. The slowly updated teacher model 6; en-
sures stabler and better detection performance than the stu-

dent model 6,.
Gt = a@t + (]. — 04)95 (2)

As the false detections would easily be amplified through
EMA updates, we set a higher threshold of 0.7 for filtering
online pseudo labels to relieve the confirmation bias or error
accumulation problem.

Weak-Strong Augmentation. It is common to use the
weak-strong augmentation scheme in semi-supervised clas-
sification tasks [L1]. In our proposed framework, we ran-
domly apply weak and strong augmentations A,..,,q on la-
beled images considering that the labeled data should sta-
bilize the training process as well as avoid overfitting. For
unlabeled data, the teacher model is fed with weakly aug-
mented images to generate pseudo labels, and the student
model is trained with strong augmentations A for regular-
ization purposes.

The final semi-supervised loss is the sum of the labeled
loss and unlabeled loss. For unlabeled data D,, = {z¥},
the pseudo labels ¢;* would switch from fixed predictions
generated offline by baseline detector and to online predic-
tions made by the EMA teacher model after a period of it-
erations.

ﬁs - Z Acrpn(Arand(mf)v y:) + ‘Croi (A’r'and(mf), y;) (3)
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3.3. Stage-n: Iterative Self-Training

After the last stage of semi-supervised training, we
would have a much better model than the baseline detec-



tor. Thus, it becomes possible to further improve the perfor-
mance by putting back the trained semi-supervised model
as the baseline detector and repeat the above process for
more rounds. It should be noticed that after a round of semi-
supervised training, the model becomes much more confi-
dent on unlabeled images and generate high-confidence pre-
dictions. This can be risky as the predefined threshold could
no longer work especially for teacher-student training. As
a result, we simply use the fixed pseudo labels generated
by the trained model from the last stage instead of online
predictions for fine-tuning.

4. Auto Ensemble

We design a two-stage auto ensemble scheme, in which
the proposals of all models are fused and feed to ROI Heads
respectively to produce final results. Considering the com-
putational consumption required by semi-supervised train-
ing, we choose only 4 models differing slightly in training
schedules and unlabeled data for ensembles. We follow the
same TTA strategy as mentioned above, and thus this leads
to a total of 24 predictions.

RPN Heads Ensemble. All predictions are simply con-
catenated together and the scores are lowered by soft-NMS
while keeping as many positive detections as possible. For
each, we retain the top 1000 boxes with the highest scores
and feed them to the following ROI heads.

ROI Heads Ensemble. The predictions of each fed pro-
posal in ROI heads would be weighted average into one sin-
gle result. For every model, the weights of each category are
first searched to find the best matches, which maximize the
detection performance on the given validation set [7]. The
ensemble process is presented as:

wi-(z1,y1)+w-(z2,y2)++wWn (Tn,Yn) (6)
wytwz+-Fwn
Wi s bWy S2d Wn S

w1 + w2 + Wn

(.%‘,y):
s=(

(7

where (z,y) and s indicate the coordinates and confi-
dence of the ensemble bounding box. The w; is the average
weight and p € (0, 1] is used to control the confidence dis-
tribution, which helps retrieve more positive detections es-
pecially combined with soft-NMS. First, we would search
for the post-processing method and IoU thresholds on the
validation set. And then the simulated annealing method
[6] is used to search for parameters w and p.

5. Experiments

5.1. Implementation Details

Baseline Training. The baseline experiment is con-
ducted on 8 NVIDIA V100 GPUs with a batch size of 16.
In the training phase, we utilize multi-scale training and the
image size ranges from 960 x 640 to 2880 x 1920. The SGD

validation mAP
67.32
67.81 (+0.49)
68.75 (+0.94)
69.48 (+0.73)
70.83 (+1.35)
71.47 (+0.64)

Basline (Cascade R-CNN)
+ color jitters
+ MixUp / CutMix
+ 50 epochs training
+ multi-scale training
+ HTC mask heads

Table 1. Performance of techniques of a single model with single
scale testing on the validation set trained on training set.

optimizer with an initial learning rate 0.03, momentum 0.9,
and weight decay 0.0001 is used for training. The augmen-
tation strategy includes mixup, cutmix, and random color
jitters. The training epoch is set to 50 with the learning rate
decayed by a factor of 0.1 at epoch 33 and 44.

The Cascade R-CNN detector uses Swin Transformer as
the backbone with window size 12 x 12, drop path rate 0.3,
and ImageNet pre-trained weights for initialization. The
baseline box head uses GIoU loss for regression and cross-
entropy loss for classification. We keep the mask heads of
HTC in baseline training and remove them in the following
semi-supervised training for saving GPU memories.

Semi-Supervised Training. In Stage-1, we load base-
line weights to initialize the student model and teacher
model. The offline pseudo labels are generated by the base-
line detector and the confidence threshold is set to 0.5 to fil-
ter low-confidence false detections. In teacher-student train-
ing, the EMA update ratio « is set to 0.999 and a confidence
threshold 0.7 is used for online pseudo labels. We randomly
sample 200k unlabeled images for training and the epoch is
set to 15. Considering a large number of unlabeled images,
we conduct the experiment on 32 NVIDIA V100 GPUs and
the batch size is chosen as 64. The pseudo labels switch
from offline to online at epoch 5 and the learning rate de-
cays by a factor of 0.1 at epoch 7 and 12.

In Stage-n, we use the semi-supervised model trained in
the last stage to update offline pseudo labels on the same un-
labeled images and load it to finetune for one more round.
Online pseudo labels are not used here and the initial learn-
ing rate is set to be 0.003.

5.2. Results

We first study the effectiveness of different techniques
on training the baseline detector and the results are shown
in Table[I] It is easy to see that augmentation strategies to
avoid overfitting are necessary for training a good baseline
detector as the training set only consists of 5000 labeled
images.

In Table|2] we validate the performance of different parts
in the 020 semi-supervised framework. For quick experi-
ments, we use the Sk labeled images and randomly sampled
50k unlabeled images for training. Adding online pseudo
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71.47
73.94 (+2.47)
74.85 (+3.38)
76.15 (+4.68)
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v v v 78.89 (+7.42)

Table 2. Performance of O20 semi-supervised training on the validation set. For quick experiments, the sampled amount of unlabeled

images is S0k.

User Car Truck Tram Pedestrian Cyclist Tricycle mAP
HOW 9394 90.24 87.94 83.16 89.44 66.72 8524
newer2021 92.89 87.49 84.55 82.51 87.25 56.08 81.79
IPIU-XDU 92.65 87.36 83.80 81.07 86.58 56.19 81.27

Table 3. State-of-the-art Performance on the test set. The results
of each category are shown in the table.

labels for training gives a 1.3% boost in the validation mAP
as we’ve expected. The sharp improvement on the vali-
dation set should be attributed partly to the different data
distributions of the training set and validation set. For ex-
ample, there are no night scenes in the training set and the
predicted pseudo labels help learn the latent knowledge to
detect on night images. When adding the validation set to
the labeled data, the improvement becomes less remarkable
on the test set. For iterative training, we only train the semi-
supervised model for one more round, which means that
this is the performance of Stage-2. As the marginal benefits
introduced by better semi-supervised models decrease, the
performance of further training stabilizes. Training for one
more stage is enough with limited computational resources.

By further using post-processing techniques mentioned
above, the detection performance improves by 1.9%. With
an ensemble of 4 models trained with different learning
rate schedules and unlabeled data, we finally achieve the
78.89% mAP on the validation set with only 50k unlabeled
images.

We show the final results on the challenge leaderboard
in Table [3] The baseline detector is trained together with
the labeled training set and validation set. The 200k sam-
pled unlabeled images are used for semi-supervised training
and we’ve found that increasing the sample number to 500k
couldn’t improve the performance much. We assume that
the extra sampled images become homogeneous and carry
less useful information.

5.3. Things Don’t Work

Except for semi-supervised training, we’ve also tried
other standard detection strategies to complement our pre-
dictions, such as expert models and small object detections.

For expert models, different resampling methods are used
to improve the detection ability on the tricycle category but
none of them are effective enough. We hypothesize that
with only a small amount of labeled images, it is hard to
train an expert model using only resampling methods to
cover the whole feature space of a certain category, as the
backgrounds and objects are varied. We also trained an-
other model only for detecting small objects in the image
but found out that many more false detections were intro-
duced and the whole performance degraded.

6. Conclusion

In this report, we present our method for the semi-
supervised object detection task. The proposed 020 frame-
work which combines offline and online methods shows its
effectiveness in our experiments. Also, we build a strong
baseline detector using augmentation strategies and design
a useful auto ensemble scheme. The above works led us to
2nd place in the SSLAD Track 1 Challenge.
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