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Abstract

Modern object detection architectures are moving to-
wards employing self-supervised learning (SSL) to improve
performance detection with related pretext tasks. Pretext
tasks for monocular 3D object detection have not yet been
explored yet in literature. The paper studies the application
of established self-supervised bounding box recycling by la-
beling random windows as the pretext task. The classifier
head of the 3D detector is trained to classify random win-
dows containing different proportions of the ground truth
objects, thus handling the foreground-background imbal-
ance. We evaluate the pretext task using the RTM3D de-
tection model as baseline, with and without the application
of data augmentation. We demonstrate improvements of be-
tween 2-3 % in mAP 3D and 0.9-1.5 % BEV scores using
SSL over the baseline scores. We propose the inverse class
frequency re-weighted (ICFW) mAP score that highlights
improvements in detection for low frequency classes in a
class imbalanced dataset with long tails. We demonstrate
improvements in ICFW both mAP 3D and BEV scores to
take into account the class imbalance in the KITTI valida-
tion dataset. We see 4-5 % increase in ICFW metric with
the pretext task.

1. Introduction
3D object detection is a crucial perception task in mod-

ern autonomous driving applications, used upstream for
scene understanding, object tracking and trajectory predic-
tion and decision making. Initially, autonomous cars are
equipped with LiDAR sensors and most 3D detectors rely
on LiDAR data to perform 3D object detection. LiDAR
provides precise distance measurement which makes it fea-
sible to detect accurate 3D bounding boxes. But, they
are expensive to be deployed in autonomous cars. Recent
autonomous cars use single monocular camera and hence
monocular 3D object detection (3D OD) became a research
focus in computer vision community.

RTM3D [9] is a monocular 3D object detector based on
the CenterNet architecture [19], we shall use this model as

our baseline model to evaluate SSL methods for object de-
tection. In this paper we evaluate the use of multi-object
labeling pretext task proposed by authors in [7] as self-
supervision to improve the 3D monocular object detection.

3D monocular detection requires an expensive annota-
tion process. Self supervised learning methods provide aux-
iliary or pretext tasks that use cheaply available labels, to
help the downstream primary task of monocular 3D-OD. In
summary, the contributions of our paper are as follows: 1.
We evaluate the performance of baseline RTM3D detector
with self-supervised multi-object labeling pretext task un-
der 2 settings (i) different number of random windows as
a hyper-parameter (ii) Under the use of data augmentations
along with self-supervision. 2. Propose the class frequency
sensitive detection score (ICFW) that measures improve-
ment in low frequency critical classes i.e. in pedestrian and
cyclist classes.

Extensive analysis on KITTI dataset [4] demonstrates
that our proposed data augmentations improve performance
under various conditions: occlusions, contrasted/shadowed
pixels, changing the diversity of viewpoints of objects seen
in the dataset.

2. Related Work
2D OD on image plane is inadequate for reliable au-

tonomous driving scenario because it does not provide an
accurate estimation of 3D objects sizes and space localiza-
tion. In other words, 2D OD methods have limited perfor-
mance in following scenarios namely occlusion, object pose
estimation and 3D position information. A 3D bounding
box provides precise information about the size of the ob-
ject and its position in 3D space.
3D Object Detection : 3D OD methods are usually part
of the 4 following categories: (i) 2D proposal generation
[6], (ii) Geometric constraints [20], (iii) Key-points de-
tection [19] or (iv) Direct 3D proposal generation [10].
RTM3D[9] and its extension KM3D [10] using CenterNet
[19] to regress a set of 9 projected keypoints corresponding
to a 3D cuboid in image space (8 vertices of the cuboid and
its center). They also perform direct regression for the ob-
ject’s distance, size and orientation. These values are then
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Figure 1: Self supervised learning setup with monocular 3D object detection as main task, and multi-object labeling as pretext
task. Following authors in [7], we train the main and pretext task in a multi-task learning setup by summing the two losses
with equal static weights.

used for offline initialization of an optimizer to estimate
3D bounding boxes under geometric constraints. CenterNet
provides basic data augmentation such as affine transfor-
mations (shifting, scaling) and random horizontal flipping.
Over these, KM3D [10] adds coordinate independent aug-
mentation via random color jittering.

SMOKE [11] regresses 3D bounding box directly from
image plane which eliminates 2D bounding box regression.
It represents an object by a single keypoint and these key-
points are projected as 3D center of each object. Mono3D
[2] is a region proposal based method that uses seman-
tics, object contours and location priors to generate 3D
anchors. It generates proposal by performing exhaustive
search on 3D space and uses non-maximal suppression for
filtering. SMOKE augments the training samples with hor-
izontal flipping, scaling and shifting. GS3D [8] predicts the
guidance of cuboid and performs feature extraction by pro-
jecting region of guidance. GS3D performs monocular 3D
detection without augmenting the training data.

2.1. Self-supervised learning

Supervised learning requires human endeavour to cre-
ate high quality annotations whereas self-supervised learn-
ing (SSL) creates labels by their own models without need
for human labour. In the area of computer vision, various
clues like optical flow [14], tracking [16], inpainting [15],
sound [13] and colorization [18] are being utilized as a pre-
text task which help the primary task generalize better. Au-
thors [12] train the network to solve jigsaw puzzles and fine
tune it for object localization and detection where [5] dif-
ferentiates real and artifact images and transfer it to object
detection. Authors in [18] trained the model for coloriza-

tion purpose and modulated it for object detection. Authors
in [1] estimate 3D object properties such as location, di-
mension etc. via SSL and differentiable rendering, which
eliminates the need for 3D annotations. [7] created three
auxiliary tasks which reused bounding box labels for self
supervision in order to improve 2D object detection perfor-
mance. In this paper, we reiterate this recycling bounding
box task [7], reusing the same method to achieve better 3d-
monocular object detection.

3. SSL for Object detection
Authors in [7], discuss the use of three different pretext

tasks to improve the performance of the main/downstream
object detection task. Key pretext tasks include :

• Multi-Object Labeling (MOL) : To handle the im-
balance in foreground and background w.r.t an object
detection task, authors propose the usage of a random
window (W ) with partial or complete intersection with
objects in the given sample (image I , bounding boxes
{B}) pair to artificially increase the number of bound-
ing boxes. The multi-object soft label corresponding to
the random window assigns area ratios of each class’s
GT boxes B within the random window W . Only the
classifier head of Faster R-CNN and R-FCN models
were trained in a multi-task setting (detection as the
main task, random window classification as an aux-
iliary task). We have demonstrated this on a KITTI
image sample in figure 2.

• Closeness & FG segmentation : Authors in [7] also
proposed a closeness label that measures the distances
from the center of a GT box to those of other GT boxes.



Figure 2: Visualization for 3 different random windows se-
lected from the input image domain, along with their soft
label generated by using the proportion of different classes
& background within each window.

While the segmentation task performs binary fore-
ground/background segmentation, where foreground is
created from union of regions of all bounding boxes.

In our study, we only evaluate the performance of the MOL
pretext task.

3.1. Data augmentations

Box-Mixup : Motivated by the work on Mixup data aug-
mentation [17] Box-MixUp is proposed to augment an im-
age with object patches from other images, thus providing
the same advantages of MixUp but localized over multiple
regions in the image. The augmented sample can be ex-
pressed as:

x̃ = (0.5xA + 0.5xB) ·MB + xA · (1−MB)

ỹ = yA ∪ yB
(1)

Box-Cut-Paste : Following cut-paste data augmentation
[3] in Box Cut-Paste, we paste the pixels under the bound-
ing box mask from one image onto the reference image.
This can be expressed as :

x̃ = xA · (1−MB) + xB ·MB

ỹ = yA ∪ yB
(2)

The augmentations are demonstrated in figure 3.

4. Experiments
Baseline Model : RTM3D [9] is a real-time network that

is based on the CenterNet architecture, which enables both

fast training cycles and small inference time. Authors have
already provided a set of baseline data augmentation which
include flip, affine transformations, stereo dataset augmen-
tation using the left/right images in the KITTI dataset.

In our study we present the following comparisons. The
RTM3D baseline model trained with multi-object labeling
as pretext task in two settings: 1. with pretext task alone 2.
pretext task along with data augmentation.

SSL task: Multi-Object-Labelling: Self supervised
learning setup for our evaluation is shown in Fig. 1.
We evaluate the performance of the Multi-Object-Labelling
pretext task proposed by authors in [7]. We evaluated the
performance at different number of random windows as a
hyper-parameter : two, four, eight, and six-teen random
windows. We evaluated uniform different distribution of
scales of random windows.

5. Results

We evaluate our models on the KITTI 3D detection
benchmark which consists of 7,481 labeled training sam-
ples and 7518 unlabeled testing samples. Since the ground
truth labels for the test set are not available, we evaluated
our model by splitting the training set into 3711 training
samples and 3768 validation samples. We experiment with
ResNet-18 as the backbone. We implemented our deep neu-
ral network in Pytorch and trained using Adam optimizer
with learning rate of 1.25*1e-4 for 200 epochs. We trained
our network with a batch size of 16. Our model achieved
best speed with 33 FPS on a NVIDIA GTX 2080Ti GPU.

Metrics : The KITTI benchmark evaluates the mod-
els by Average Precision (AP) of each class (Car, Pedes-
trian and Cyclist). We use the Mean Average Precision
(mAP), the mean value of the Average Precision (AP) over
all classes using equation (3) :

mAP3D =
1

|C|
∑
c∈C

APc (3)

where C = {car, pedestrian, cyclist}.
Inverse Class Frequency Weighted (ICFW) mAP : We

introduce a new metric that is used to demonstrate gains in
a class imbalanced KITTI dataset. As the proposed met-
ric is weighted by inverse of the class frequency, the gains
over minority classed are favoured. The relative frequency
(denoted by fc and in blue) of car, pedestrian and cyclist
classes in the validation classes are shown in Table 2. This
is evaluated by the following formula in equation (4):

wc :=
f−1c∑
c∈C f−1c

∈ [0, 1] and
∑
c∈C

wc = 1 (4)

The values of wc are shown in Table 2. Now the ICFW



Figure 3: The three data augmentations : Box-mixup, Box-Cutpaste and Cutout that were used along with MOL pretext tasks.

Table 1: mAP and ICFW mAP scores for both 3D and BEV detection bounding boxes. Green refers to positive gains, while
red refers to negative drops in performance over the baseline.

IoU=0.5 mAP2D mAPBEV mAP3D ICFW mAP2D ICFW mAPBEV ICFW mAP3D

Baseline (B) 41.44 21.17 19.12 33 15.1 14.65
Self-Supervised Learning (SSL)

B + 8W 0.85 0.53 0.46 0.83 0.7 0.54
B + 16W 0.59 -0.75 -0.59 0.57 -1.88 -1.73
B + 32W 1.4 0.29 0.12 1.75 0.12 -0.17

Data Augmentation (DA)
B + Cutout4 -0.91 0.11 -0.71 -2.79 0.15 -0.54
B + BoxMixup 0.39 0.29 0.21 0.53 0.12 0.04
B + Cutpaste 1.63 1.10 0.34 3.22 1.91 0.49

SSL + DA
B + 16W + Cutout 1.54 1.27 0.43 2.17 2.81 1.02
B + 16 W + box mixup 1.2 1.67 1.66 1.42 2.57 2.59
B + 16 W + boxmixup cutout 3.51 1.84 1.01 5.57 2.53 1.02
B +16 W + cutpaste cutout 2.87 1.38 2.26 5 1.13 1.19
B +16 W + cutpaste 0.98 0.67 0.72 1.61 0.65 0.73

mAP is evaluated with equation (5) as:

ICFW mAP3D =
∑
c∈C

wcAPc (5)

Table 1 shows the results of DA and SSL evaluated on
KITTI dataset. It tabulates the mAP2D, mAP3D & mAP-
BEV over all classes for IoU=0.5.

SSL vs SSL+DA : We observe an improved performance
in both mAP3D and mAPBEV scores when using the MOL-
SSL pretext task. In our study we evaluate the effect of
3 data augmentation schemes on the pretext task and thus
the performance of the main task. They are detailed and
demonstrated in Figure 3. The combination of SSL-MOL
along with cutout and box-mixup augmentations provide
the largest of gains. This is attributed to the gains that
cutout provide for truncated objects, and box-mixup for var-
ied foreground/background variations.

DA vs SSL+DA : The proposed data augmentations
alone without pretext tasks do also provide gains over the
baseline while remaining lower in performance than com-
bination SSL+DA. We hypothesize that DA provide aug-
mented samples that help to improve the pretext task by im-
posing that the n/w should learn features to classify random

windows in augmented samples as well as the primary 3D
detection task. Cutout alone performed a bit worse over
baseline, while in combination with the MOL pretext task,
performance is greater than Cutout/SSL tasks alone.

6. Conclusion

In this study we evaluated the performance of the multi-
object labeling pre-text task training in conjunction with the
main monocular 3d-object detection task. As expected due
to correlation between the classification task and the 3d lo-
calization task, we see an improvement of 1-2 points in the
mAP scores for 3D and BEV metrics, besides the evident
gains in mAP 2D scores. We also evaluated the performance
of using data augmentation schemes along with the pre-
text task, in our case we evaluated the performance of box-
mixup (a bounding box version of instance mixup), cutout
and box-cut-paste, and their combinations. We observed
that the addition of data augmentation strategies improved
the diversity of samples received by the MOL pretext task,
and thus directly contributed in improving the performance
of the main 3d detection task.
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B. Class frequencies in KITTI-3D

Table 2: Class freq. & inverse weights on the validation set.

Class Car Pedestrian Cyclist
Frequency fc 0.82 0.12 0.05
Inverted wc 0.04 0.27 0.69

C. Example results
Fig. 4 shows the detection results of our proposed Box-

Mixup data augmentation on KITTI in different scenar-
ios. Ex. Occluded objects, missed detections and mis-
classification by baseline. It shows baseline, Box-Mixup
predictions on left panel and their corresponding BEV rep-
resentations on right panel.
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Figure 4: Illustration of Box-Mixup data augmentation in various scenarios. Each time contains the (baseline, Box-Mixup)
prediction pair on the left panel, while the BEV representations (baseline, data augmented) pair on the right panel.


