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Abstract

This paper explores how the increasingly popular trans-
former architecture can be guided towards spatially con-
sistent aggregation of features, by exploiting geometric
constraints in a self-supervised depth-from-mono learning
scheme. We propose a novel spatial-temporal attention
mechanism comprising of: 1) a spatial attention module
that correlates coarse depth predictions to aggregate local
geometric information; 2) temporal attention to further pro-
cess local geometric information in a global context across
consecutive images. Additionally, we introduce geometric
constraints between frames regularized by photometric cy-
cle consistency. By combining our proposed regularization
and the novel spatial-temporal-attention module, we fully
leverage both the geometric and appearance-based consis-
tency across monocular frames. This yields geometrically
meaningful attention and improves temporal depth stability
and accuracy compared to previous methods.

1. Introduction
Improving the accuracy of self-supervised monocular

depth prediction has been studied extensively over the past
years [9] and is essential for many applications in 3D vision
such as 3D reconstruction [22], SLAM [30], pose estima-
tion [2], medical applications [4], AR/MR [20], computa-
tional photography [3], or autonomous driving [8]. Recent
approaches try to leverage transformers to improve depth
accuracy [14], but the attentive feature aggregation does
not integrate geometric information. The unique formula-
tion of our proposed spatial-temporal attention model can
explicitly correlate geometrically meaningful and spatially
coherent features - by first passing through the spatial at-
tention - and at the same time can provide temporal aggre-
gations across consecutive frames. Compared to previous
methods [1], our geometric constraints do not negatively
effect depth accuracy results and yield focused and accu-
rate attention between frames. Fig. 1 visualizes the spatial
and temporal attention individually for a queried pixel. The
spatial attention aggregates geometrically consistent parts
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Figure 1: Qualitative visualization of our proposed attention mechanism
with self-supervised geometric guidance compared against naive attention.

of the scene (notice large attention gradients towards the
background at object edges). The appearance-based tem-
poral attention correlates global information, which may be
difficult and imprecise in a naive approach (Fig. 1 center).
With our additional geometric constraints the attention is
very focused and spatially coherent, as illustrated for two
very challenging examples with thin structures and dynamic
objects in Fig. 1 (right).

2. Related Work

Recent works on self-supervised depth estimation from
monocular video sequences try to leverage the sequential in-
put images [9] to predict more temporally consistent dense
depth. Bian et al. [1] propose a scale consistent depth and
ego-motion approach by adding a depth consistency loss.
This leads to reduced scale drift of inferred poses and depth
but decreases depth accuracy. ManyDepth [28] proposes
to utilize nearby frames of the monocular video sequence
during inference time by proposing a cost volume which
aggregates the encoded features of multiple frames. This
approach is more efficient than previous test time refine-
ment procedures [26] and achieves highly accurate self-
supervised depth predictions, but relative poses between
frames need to be predicted as well. Mentioned methods
however, do not employ the strong capabilities of trans-
former models, yet.

Self-attention mechanisms are becoming increasingly
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Figure 2: Qualitative depth results: ManyDepth [28] suffers from flicker-
ing effects between consecutive images. Our method estimates consistent
depth across frames, even capable of handling large dynamic objects.

popular in computer vision [33, 19]. While a trained set
of traditional convolutions is applied independently to an
image with fixed kernels during test time, self-attention
constitutes a set of operations that adapt to the image and
feature input. In this regard, Huynh et al. [12] propose a
depth-attention volume to favour planar scene structures,
well suited for indoor environments, while [25] use atten-
tion gates in the decoding stage of depth estimation. In [17]
patch-wise attention aggregates information of neighbour-
ing features in the scene to predict dense depth in a super-
vised setting. Also [29] proposed the integration of trans-
formers within a large architecture for highly accurate pre-
dictions, but only show applicability in a fully supervised
setting. Johnston et al. [14] pioneer the integration of trans-
formers in self-supervised depth prediction for large out-
door scenes, by proposing a self-attention mechanism on
the feature embedding of input frames after a ResNet en-
coder and integrate a discrete disparity volume as depth
decoder. Despite good accuracy results, the naive self-
attention seems non-expressive and incapable of aggregat-
ing meaningful features for the task of 3D scene regression.

3. Method

The goal of the proposed method is to integrate a
lightweight attention mechanism, for improved depth pre-
diction (compare Fig. 2), which aggregates local spatial and
temporally consistent information while training in a self-
supervised setting with geometric guidance. We employ the
widely used paradigm of regressing depth and relative cam-
era poses jointly, by minimizing the image reconstruction
loss after warping adjacent frames into a common central
view via backwards warping with predicted dense depth and
pose [9]. We propose the network architecture as illustrated
in Fig. 3. For pose regression, we employ the same strategy
as previous methods [9, 28] (not illustrated here).

We opt for a feature encoder with dilated convolu-
tions [31] to align resolutions with the attention module
in the bottleneck. The DRN-C-26 encoder is similar to a
ResNet18 but with dilated strides and additional de-griding
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Figure 3: Pipeline Overview: 1. Image features are extracted with a di-
lated residual network (DRN) 2. An auxiliary low resolution depth map
is predicted by a single-stage reference decoder and passed to the spatial
attention module for local geometric correlation. The temporal attention
aggregates the spatially-aware features globally across frames. 3. Aggre-
gated features are decoded to final depth predictions with skip connections
from the encoder.

layers to remove checkerboard effects [31]. The feature em-
bedding of the encoder is additionally given to an auxil-
iary single-scale depth decoder [10, 14] which produces a
coarse initial depth prediction for the spatial-temporal at-
tention module. The attention mechanism is applied on the
coarsest resolution at 24×80 px, which is 1/8th of the input
resolution. Inspired by optical flow approaches, the tem-
poral attention takes the encoded input features, together
with the spatial attention, to aggregate temporally consis-
tent scene content, before passing through the final depth
decoder.

3.1. Attention Module

The inputs for the attention layer are usually named
query (Q), key (K), and value (V). Q retrieves information
from V based on the attention weight:

Attention(Q,K, V ) = A(Q,K)V, (1)

where A(·) is a function that produces a similarity score as
attention weight between feature embeddings for aggrega-
tion. Recent works [27] have shown that transformer mod-
els with self- and cross-attention can outperform fully con-
volution networks [18] for the task of finding dense corre-
spondences between image pairs. Inspired by these findings
we propose our spatial-temporal attention module.



Spatial-Attention Layer. Self-attention as proposed
in [14] correlates information within the same image to at-
tend to visually similar parts of the scene. The dot-product
in the attention module can introduce some feature aggrega-
tion from geometrically distant parts in the 3D scene, which
may not be desirable for the task of dense depth regression.

We propose explicit modelling of self-attention with 3D
spatial awareness by exploiting a coarse predicted initial
depth estimate. Given known camera intrinsics K, a pair
of coordinates Ci = (ui, vi) and Cj = (uj , vj), together
with their depth di and dj , we first back-project the two
pixel coordinates to 3D space:

Pi = K−1(di ·Ci), Pj = K−1(dj ·Cj). (2)

Then we formulate the spatial-attention explicitly as:

Aspatial
i,j = exp

(
− ‖Pi −Pj‖2

σ

)
, (3)

where Pi, Pj can be treated as key and query, respectively.
This can be interpreted as 3D positional encoding via 3D
spatial correlation.

Temporal-Attention Layer. Inspired by the correla-
tion layer in optical flow [13] and recent dense match-
ing pipelines [27], we formulate a novel temporal attention
across frames by exploiting the temporal image sequence
input of the self-supervised training scheme.

As a result, given a triplet of feature maps from consec-
utive image inputs, we can iteratively choose one of them
as query and the rest as key features, and then acquire the
key-query similarities using Softmax. Here we define Fq

i as
query feature and Fk

j as key feature, and temporal-attention
is formulated as:

Atemporal
i,j = Softmaxj(F

q
i
>
Fk

j ). (4)

3.2. Loss Formulation

Our model is trained with a set of loss terms based on
content-based image reconstruction and geometric proper-
ties of our depth map. It reads:

L = Lphoto + λsLs + λmLm + λgeoLgeo + Lref, (5)

where the photometric error Lphoto, the smoothness loss Ls
and the auto-masking for stationary objects Mauto follow
previous established methods [9, 28] and are therefore not
detailed here. We detail all other parts hereafter.

Motion Consistency Loss Lm. Inspired by the knowl-
edge distillation strategy from [24], we train a simplified
self-supervised depth prediction network (MonoDepth2 [9]
in Table 1) alongside as weak teacher. Following [28], we
define a mask where large differences between our predic-
tion Dt and the teacher D̂t may indicate moving objects as

Mm = max
(Dt − D̂t

D̂t

,
D̂t −Dt

Dt

)
< τ. (6)

This yields our motion consistency term with τ = 0.6

Lm = (1−Mm) · ‖Dt − D̂t‖1. (7)

Regularized Geometric Consistency. Aggregating the
pixel-wise mean geometric loss over different views vio-
lates the scene structure as occluded regions would con-
tribute to the loss computation, resulting in blurry edges and
low depth accuracy [1]. The pixel-wise minimum depth er-
ror was already proposed to avoid this issue [7, 32]. How-
ever, quantitative and qualitative evaluations show that this
strategy, while mostly solving the issue of occluded regions,
often also excludes major regions of the scene. Instead,
we propose a novel masking scheme by exploiting the as-
sumption of photo-consistency. For this purpose, the central
target image It is projectively transformed to the view of
the adjacent source frame It→s and then transformed back
again It→s→t. Our cycle-masking can be formulated as:

Mcycle =
[
Epe(It, It→s→t) < γ

]
, (8)

where [·] is the Iverson bracket and Epe is the photometric
error [9]. We set an adaptive threshold γ as the 70% per-
centile of the photometric error among all pixels of Is for bi-
narization ofMcycle. With our cycle-masking, we can suc-
cessfully rule out occluded regions while preserving most
of the non-occluded regions for more exhaustive geometric
consistency checking.

Geometric Loss Lgeo. Inspired by the ratio loss pro-
posed by [16], we design a geometric loss that not only
alleviates the problem of penalizing the scale of the depth
prediction, but also utilizes the cycle consistency (Eq. 8) to
handle occlusions with

Lgeo =Mm · Mauto · Mcycle ·
(
1− min(Ds→t, D

′
t)

max(Ds→t, D′t)

)
,

(9)

where Ds→t is the depth map warped from the adjacent
source frame to the target frame and D′t is the interpolated
target depth map [1, 7].

Reference Loss Lref. To train the single-stage auxiliary
depth decoder dt for spatial attention acquisition, we min-
imize its difference against the (detached) final depth pre-
diction of our full pipeline Dt:

Lref = ‖Dt − dt‖1 . (10)

4. Experiments
We evaluate our model against recent SOTA quantita-

tively on well established depth accuracy metrics [9]. We
follow previous works on self-supervised depth estima-
tion [9, 28] and conduct extensive experiments on the Eigen
split [6] of the Kitti dataset [8] and also report results on
Cityscapes [5]. For inference we use an image triplet as



Method Abs Rel Sq Rel σ < 1.25 σ < 1.253

Monodepth2 [9] 0.115 0.903 0.877 0.981
SC-SfMLearner [1] † 0.119 0.857 0.863 0.981
TrianFlow [34] 0.113 0.704 0.871 0.984
PackNet-SfM[11]∗ 0.111 0.829 0.864 0.980
FeatDepth[26] ‡ 0.109 0.923 0.886 0.981
ManyDepth [28] 0.098 . . . . . . .0.770 0.900 0.983
Ours (DRN-C-26) . . . . . .0.106 . . . . . . .0.770 . . . . . .0.890 0.983
Ours (DRN-D-54) 0.103 0.746 0.894 0.983
ManyDepth[28]

T
T

R 0.090 0.713 0.914 0.997
Ours (DRN-C-26) 0.082 0.667 0.921 0.997
ManyDepth [28] S . . . . . .0.117 . . . . . . .0.886 . . . . . .0.872 0.982
Ours (DRN-C-26) S 0.107 0.784 0.888 0.983
Ours (DRN-D-54) S 0.104 0.760 0.982 0.983
Monodepth2 [9] CS . . . . . .0.129 . . . . . . .1.569 . . . . . .0.849 . . . . . .0.983
ManyDepth [28] CS 0.114 1.193 0.875 0.989
Ours (DRN-C-26) CS 0.110 0.958 0.867 0.991

Table 1: Accuracy results. Top: Kitti [8] Eigen test split [6]. ∗: semi-
supervision. TTR: With test time refinement [26]. S: Static camera simu-
lation. Bottom: CS: Cityscape dataset [5]. †: new results from GitHub; ‡:
retrained results with standard image size for fair comparison. We high-
light best; 2nd best; . . . .3rd. . . . . .best results.

indicated in Fig. 3, similar to ManyDepth [28] where con-
secutive images are used as well. Different from [28], our
method does not need to predict relative poses between ad-
jacent frames for depth inference.

Depth Accuracy. Table 1 summarizes the depth ac-
curacy results. Our model performs significantly better
than comparable self-supervised models (MonoDepth2 [9]),
and yields better results than models with larger backbones
(FeatDepth [26]), models trained with consistency con-
straints (SC-SfMLearner [1]) or semi-supervised methods
(PackNet-SfM [11]). We also adopt the test time refinement
scheme (TTR in Table 1) of [21], for which our method out-
performs ManyDepth [28]. Our method also achieves the
best accuracy on the challenging Cityscapes dataset [5].

To simulate the scenario of a static camera, where no
consecutive images with changing scene structure are pro-
vided, we input only a single static image to our method,
and compare against ManyDepth [28] which also utilizes
consecutive input frames. Despite slightly inferior results
for our method with single static frame input compared to
temporal images, we do not observe such strong deteriora-
tion in accuracy as for ManyDepth [28].

Ablation Study. To quantitatively evaluate the influence
of each sub-module, we perform an extensive ablation study
and report depth accuracy as before in Table 2. The choice
of the backbone (ResNet18 in MD2 [9] against DRN-C-26
in our baseline) has only a marginal effect.

The ablation study reveals that the spatial-temporal at-
tention has a major influence on accuracy. Lgeo actually re-
duces accuracy slightly for the accuracy measure σ < 1.25
(which is in accordance with the observations from SC-
SfMLearner [1]). The additional cycle mask Mcycle can
mitigate this issue by better accounting for occluded re-
gions based on photometric cues. Lm reduces the outlier

Method Lgeo Mcycle Attention Lm Abs Rel Sq Rel σ < 1.25 σ < 1.253

MD2 [9] 0.115 0.903 0.877 0.981

D
R

N
-C

-2
6

0.115 1.027 0.879 0.979
X 0.113 0.904 0.877 0.980
X X 0.111 0.878 0.882 0.981

X 0.112 0.974 0.882 0.980
X 0.112 0.840 0.880 0.982

X X X 0.108 0.819 0.886 0.982
X X X X 0.106 0.770 0.890 0.983

DRN-D-54 X X X X 0.103 0.746 0.894 0.983

Table 2: Ablation study on depth accuracy for Kitti [8] Eigen test split [6].

rate as indicated by the Sq.Rel. error, as moving objects
are handled explicitly. When spatial-temporal attention is
combined with Lgeo andMcycle, the additional loss function
together with appropriate regularization can guide the atten-
tion module to learn geometrically more consistent aggrega-
tion of temporal information, thus significantly improving
depth accuracy. The full model achieves the best results,
and a larger encoder can improve results further.

Attention Ambiguities. Fig. 9 illustrates that the ball-
query of the spatial attention can correlate spatially nearby
structures. The temporal attention does not always provide
one distinct maximum attention for a queried pixel, as mul-
tiple non-identical objects of similar appearance may show
high correlation, hence yielding ambiguous attention (mul-
tiple pedestrians or cars). Note, only objects in a close depth
layer are correlated, while other similar distant objects are
ignored (e.g. cars in the background). This behavior con-
firms our hypothesis that the spatial attention and geometric
constraints guide the temporal attention towards geometry-
aware aggregation of consistent features.

5. Conclusion
Our model fully leverages the spatial-temporal domain

to predict self-supervised consistent depth estimations by
introducing a unique and novel attention model, based on
spatial and appearance-based information, with geometric
guidance. Our method has proven that geometric con-
straints, together with cycle consistency regularization, can
guide the spatial-temporal attention aggregation towards fo-
cused and distinct feature aggregation for the task of self-
supervised depth (from monocular images) prediction.
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Figure 9: Attention ambiguities: Illustration of spatial and temporal atten-
tion for difficult scenes with multiple related objects at similar distance.
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A. Appendix
A.1. Qualitative Results

Figs. A1, A2 and A3 show more qualitative 3D recon-
struction results. The importance of temporally consistent
depth predictions is apparent in such reconstructions. A
single depth map cannot capture inconsistencies, but ob-
serving a reconstruction of fused depth maps from differ-
ent view points can intuitively demonstrate such effects.
In the examples illustrated here, the strong baseline Many-
Depth [28] - despite achieving state-of-the-art results in ac-
curacy - suffers from deformed objects, ghosting effects,
and ”flying pixels”. Similar artifacts are observed for the
semi-supervised PackNet-SfM∗ [11]. Our method yields
the most consistent reconstructions from consecutive depth
maps.

A.2. Implementation Details

We implement our model in PyTorch [23] and train for
25 epochs using Adam [15] with a batch size of 6 for our
full DRN-C-26 [31] model, trained on one NVIDIA RTX-
3090 GPU. We choose an initial learning rate of 1×10−4 for
15 epochs, which we decrease to 2.5 × 10−5 for 5 epochs,
and 6.25×10−6 for the last 5 epochs. We perform the same
augmentations as [9]. We set λgeo = 0.1 and λs = 10−3.
λm = 1.0 for the first 20 epochs, after which λm = 0.0 to
allow our network better finetuning.
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Figure A1: Qualitative reconstruction results from five consecutive depth predictions. Both, ManyDepth [28] and PackNet-SfM∗ [11] with velocity semi-
supervision, suffer from ”flying pixels” (View 1), ghosting effects (View 2), and deformed objects (View 3), due to temporal inconsistencies. This is not
directly apparent in a single frame depth prediction, but unfold when changing the viewpoint. Our method mitigates these artifacts to a large extent.
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Figure A2: Qualitative reconstruction results from five consecutive depth predictions. Both, ManyDepth [28] and PackNet-SfM∗ [11] with velocity semi-
supervision, suffer from ”flying pixels”, ghosting effects, and deformed objects, due to temporal inconsistencies. This is not directly apparent in a single
frame depth prediction, but unfold when changing the viewpoint. Our method mitigates these artifacts to a large extent.
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Figure A3: Qualitative reconstruction results from five consecutive depth predictions. Both, ManyDepth [28] and PackNet-SfM∗ [11] with velocity semi-
supervision, suffer from ”flying pixels”, ghosting effects, and deformed objects, due to temporal inconsistencies. This is not directly apparent in a single
frame depth prediction, but unfold when changing the viewpoint. Our method mitigates these artifacts to a large extent.
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