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Abstract

Class imbalance and noisy labels are the norm rather
than the exception in many large-scale classification datasets.
Nevertheless, most works in machine learning typically as-
sume balanced and clean data. There have been some recent
attempts to tackle, on one side, the problem of learning from
noisy labels and, on the other side, learning from long-tailed
data. Due to this separation, the proposed solutions often
underperform when both assumptions are violated. In this
work, we present a simple two-stage approach based on
recent advances in self-supervised learning to treat both
challenges simultaneously. It consists of, first, task-agnostic
self-supervised pre-training, followed by task-specific fine-
tuning using an appropriate loss. Most significantly, we
find that self-supervised learning approaches are effectively
able to cope with severe class imbalance. In addition, the
resulting learned representations are also remarkably ro-
bust to label noise, when fine-tuned with an imbalance- and
noise-resistant loss function. We validate our claims with
experiments on CIFAR-10 and CIFAR-100 augmented with
synthetic imbalance and noise, as well as the large-scale
inherently noisy Clothing-1M dataset.

1. Introduction

Deep Neural Networks (DNNs) have been remarkably
successful when trained under supervision of large-scale
labeled data. However, this success has hinged upon two
strong yet implicit assumptions: (i) data is balanced, i.e.
there are equal number of samples for all categories; and
(ii) all annotated labels are clean and reliable. In practice,
unfortunately, these assumptions are incredibly difficult and
expensive to meet. In fact, the price to collect and annotate
by human annotators a large-scale dataset such as ImageNet
is immense [27]. Conversely, it is now clear that collecting

large-scale datasets can be cheap and fast when affording
to violate these two assumptions [3, 21, 26, 30, 36]. It is
therefore desirable to conceive learning algorithms that can
handle imbalance and noise simultaneously.

Class imbalance and noisy labels both pose significant
challenges. A vast amount of research has looked into miti-
gating the impact of these aspects separately. Recent meth-
ods coping with noisy labels apply different techniques rang-
ing from sample selection [16, 19] to label correction [1, 33]
as well as noise-aware losses [7, 15, 29, 37]. To learn ef-
fectively from long-tailed distributions, some works have
proposed to modify the sampling algorithm to ensure all
classes are represented equally [8, 23], modify the loss func-
tion [31], or perform a post-hoc correction [20]. However,
existing methods designed to learn from noisy labels assume
a balanced class distribution and, conversely, methods tai-
lored to learn from long-tailed class distributions assume
labels to be clean.

We argue that such a separation is artificial since label
noise and long-tailed class distributions occur simultane-
ously in real-world datasets. For instance, the Clothing1M
dataset [40], collected automatically from shopping websites,
contains an estimated amount of 38.5% incorrect labels and
its most populated class contains almost 5 times more in-
stances than the smallest one (this ratio is denoted as the
class imbalance ratio).

To address both class imbalance and label noise in deep
learning, we propose to split the training procedure in two
stages: representation learning and classifier training. We
first pre-train the model in a self-supervised manner by dis-
carding the training labels. This is followed by fine-tuning
the model (i.e. learning a robust classifier) using the noisy
and long-tailed class labels. This procedure is inspired by
recent findings in semi-supervised learning where it was dis-
covered that self-supervised pre-training leads to state-of-the-
art performance [10]. We experiment with diverse formula-



tions of recently proposed self-supervised learning methods,
namely SimCLR [9], Barlow Twins [42], BYOL [14] and
SimSiam [11]. We find that all these methods are able to
learn high-quality representations even when the samples
are drawn from strongly imbalanced distributions.

In the second stage, the self-supervised model is fine-
tuned using the noisy labels. To cope with class imbalance
and noise, we adopt a simple solution based on two strong
baselines. Namely, we show that a combination of the Logit
Adjustment loss [31], a classification loss adapted to long-
tailed data, and the SuperLoss [7], a generic loss robust to
label noise, can be used to fine-tune a classifier that is robust
to both class imbalance and label noise.

2. Method
Our approach is inspired by recent advances in semi-

supervised learning [10]. It leverages available data in, first,
task-agnostic and, second, task-specific ways. Given an
image dataset with possible class imbalance and noisy labels,
we first use an augmentation invariance criterion to pre-train
a model in a self-supervised manner. Second, we fine-tune
this representation using a loss function tailored for long-
tailed data and noisy labels.

Self-Supervised Pre-training Stage. The first stage of
our approach consists of pre-training the model in a self-
supervised manner, thereby discarding the instance labels.
Since one of our goals is to study the impact of class-
imbalanced distributions on different self-supervised tech-
niques, we select a diverse subset of those methods. Namely,
we experiment with SimCLR [9] (uses positive and nega-
tive pairs), BYOL [14] (only positive pairs and momentum
encoder), SimSiam [11] (same as BYOL but no momen-
tum encoder) and Barlow Twins [42] (none of the previous).
Perhaps surprisingly, as recent attempts to explain the suc-
cess of these self-supervised approaches assume batch-level
balanced data [34], we find that all of them work well even
under severe class imbalance (see Section 3).

All these methods use Siamese networks where each im-
age x is augmented twice. The two augmented views are
fed to an encoder network (a ResNet [18]) and then trans-
formed with a MLP projection head composed of 2 or 3
fully-connected (FC) layers. During training, obtained repre-
sentations are fed to the contrastive loss in the case of Sim-
CLR or to a redundancy reduction loss for Barlow Twins,
and to a prediction head followed by similarity losses in the
cases of BYOL and SimSiam (see Supplementary material
for more details.)

Fine-tuning stage. Fine-tuning is a common way to
adapt a task-agnostic pre-trained network for a specific task,
which consists of learning with noisy labels. We follow
recent strategies for semi-supervised learning [10, 11, 14].

We freeze the entire encoder network during finetuning and
only train the MLP projection head. The head can be trained
entirely or partially. In the latter case, we fine-tune the model
from a middle layer of the projection head.

Loss functions. We leverage two recently proposed loss
functions during finetuning to ensure robustness against both
label noise and class imbalance. These are chosen for their
simplicity and effectiveness, as well as for the fact that they
can be easily combined. The first one, the logit adjustment
loss [31], is a modified version of the Cross-Entropy loss that
can handle class imbalance. Given a model fθ and observed
class distribution πy which predicts logits f(x) for a sample
x, the logit adjustment corrects the logits as follows:

f∗(x) = f(x) + log(πy). (1)

Taking softmax over the adjusted logits, the cross-entropy
loss can be applied for classification of x:

LLA = − log

(
exp(f∗y (x))∑
y′ exp(f

∗
y′(x))

)
. (2)

The second loss is the SuperLoss [7], a generic loss for
curriculum learning. Even though this loss is not primarily
meant to handle noise, recent works suggest that curriculum
learning has strong noise-resistant abilities [7, 39]. Its effect
is to downweight the contribution of hard samples (i.e. those
having a higher loss value), effectively preventing the mem-
orization of noisy labels. Given the loss LLA from Eq. (2),
the SuperLoss computes a new loss as follows:

LLA+SL(LLA, σ
∗) = (LLA − τ)σ∗ + λ(log σ∗)2, (3)

where λ is a regularization trade-off and σ∗ corresponds to a
per-sample confidence whose optimal value can be computed
in closed-form as:

σ∗
λ(LLA) = exp

[
−W

(
1

2
max

(
LLA − τ

λ
,
2

e

))]
, (4)

where W stands for the Lambert W function, τ is the ex-
pected loss for the “average” sample and is used to separate
the easy samples from the hard samples.

3. Experiments/Results
Datasets. We evaluate the proposed methodology on two

standard benchmarks with simulated label noise and class
imbalance, CIFAR-10 and CIFAR-100, and one large-scale,
real-world dataset, Clothing1M. CIFAR datasets consist of
32×32 color images composed of 10 and 100 classes, respec-
tively. Each dataset contains 50,000 train and 10,000 test
images. For both CIFAR datasets, we simulate label noise
by replacing the labels for a certain fraction of the train-
ing samples with labels chosen from a uniform distribution.



Clothing1M contains 14 classes with 1 million 256 × 256
train images collected from online shopping websites with
labels generated using surrounding text. The proportion of
annotation errors is estimated at 38.5% [40].

Class imbalance. Following prior work on class imbalance,
we create imbalanced versions of CIFAR-10 and CIFAR-100
and down-sample the number of samples per class by fol-
lowing the Exponential profile [4, 12] with imbalance ratio
γ = maxyp(y)/minyp(y). We test our method on CIFAR-
10 with γ = 50 and γ = 100. For γ = 100, the smallest
class then comprises 5000/γ = 50 training instances. When
we further apply 90% of label noise, only 5 of them keep their
original labels while the other 45 get their labels switched
to random ones (possibly keeping the same labels). Note
that the proportion of incorrect labels for CIFAR-10 needs
to be strictly less than 90%, as under 90% actual noise the
true labels cannot possibly be recovered [25]. In the case
of CIFAR-100, we test our method with γ = 5 and γ = 10.
In the latter case, the smallest class has 500/γ = 50 in-
stances, which matches the case of CIFAR-10 with γ = 100.
For Clothing-1M, which has 14 classes, we also experiment
with long-tailed versions with γ = 50 and γ = 100. The
implementation details are mentioned in the appendix.

Baselines. We compare our approach to several base-
lines and state-of-the-art approaches. First, we compare
against strong baselines consisting of training a network
from scratch in a single stage using one of the aforemen-
tioned specialized losses: the Logit-Adjusted loss [31], the
SuperLoss [7], and our proposed combination of both losses
in order to deal jointly with class imbalance and label noise.
For reference, we also compare against a standard Cross-
Entropy baseline.

Finally, we compare against DivideMix [25] and
ELR [29], two state-of-the-art methods which have both
shown excellent robustness to label noise. Note that these
methods require significant modifications compared to the
standard learning procedure used by baselines and our ap-
proach, such as network ensembling, weight averaging and
mix-up data augmentation [43]. We use their default imple-
mentations available, and we adapt these to the long-tailed
settings.

3.1. CIFAR experiments

Fine-tuning losses. We first study the impact of the
imbalance- and noise-tailored losses considered in Section 2
during finetuning of the two-stage learning process. Namely,
we consider the 4 following configurations: CE, CE+SL,
LA, LA+SL where CE and LA respectively refers to the
Cross-Entropy and Logit-Adjusted losses, and “+SL” de-
notes applying SuperLoss on top of another loss [7]. For the
SuperLoss hyper-parameters, we always use a fixed thresh-
old τ = log(C) and we set the regularisation parameter to

λ = 4. Results are presented in Figure 1 in terms of absolute
improvement compared to the CE loss for models pre-trained
using SimSiam and Barlow Twins (BYOL and SimCLR pre-
training yield similar outcomes). While we observe some
variability depending on which self-supervised method is
used, we find that combining LA+SL almost always achieves
the best performance overall. The accuracy gain can reach
over 10%, which validates the effectiveness of these two
losses. Here, it is important to note that the gains from both
LA and SL are essentially for free as it does not require any
additional information nor additional training time. In the
remainder of this section, we therefore use LA+SL as default
fine-tuning losses unless stated otherwise.

Comparison with single-stage training. To measure
how much two-stage self-supervised training is beneficial,
we compare with networks trained from scratch in a single
stage using the same losses. This can be thought of an
ablation study where we remove the self-supervised pre-
training while keeping other things equal (e.g. losses, number
of epochs, etc). We compare single-stage learning results in
Figure 2 with two-stage training using BYOL. In the absence
of noise, we observe that single-stage training is on par or
slightly better than two-stage training. However, as soon
as labels get noisy, two-stage training outperforms single-
stage training by a large margin (e.g. +24% for CIFAR-100
at 60% noise and γ = 10), even at very low noise levels.
Interestingly, two-stage training requires only little more
effort that single-stage training, as the second stage (i.e. fine-
tuning) is very short (10 epochs) and only updates a few
layers. This advocates for the use of SSL pre-training in
imbalanced and possibly noisy situations, as it can provide
state-of-the-art performance in difficult conditions.

Discussion. The poor performance achieved by ELR and
DivideMix in the presence of class imbalance and noise is
due to assumptions implicitly made in their design. Specif-
ically, the regularization applied by ELR assumes that the
clean samples are learnt first, followed by the noisy sam-
ples, and the regularization prevents the noisy samples from
being memorized. However, in the imbalanced setting, the
dominant classes are learnt first, followed by the classes on
the long-tail. The regularization applied by ELR prevents
the model from being able to learn the rare classes. In the
case of DivideMix, there is a regularization term which en-
courages the model to predict a uniform class distribution,
which is again violated in the long-tailed setting. In contrast,
SimCLR, Barlow Twins, BYOL and particularly SimSiam
are fairly robust to both the long-tailed distribution as well
as the increasing label noise.
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Figure 1: Accuracy gain compared to the cross-entropy fine-tuning baseline for models pretrained using SimSiam and Barlow
Twins. Results are averaged over all imbalanced ratios (i.e. γ = 50, 100 for CIFAR-10 and γ = 5, 10 for CIFAR-100).
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Figure 2: Comparison between two-stage training (here, BYOL with Logit-Adjusted and SuperLoss) versus single-stage
methods trained with various class imbalance- and noise-resistant losses (resp. Logit-adjusted and SuperLoss) on imbalanced
versions of CIFAR-10 and CIFAR-100

3.2. Clothing1M experiments

We first evaluate the effect of the pre-training duration
on the Clothing1M dataset in Figure 3a. We also show
the kNN-based proxy metric proposed by Chen et al. [11]
in Figure 3b. In imbalanced settings, we observe that it
only weakly correlates with the much higher performance
obtained after finetuning the model. In contrast to the kNN-
based accuracy that rapidly stagnates, the actual accuracy
after finetuning keeps increasing after 200 epochs, even
though it gradually diminishes as is expected with this type
of approach [11].

Comparison with SOTA. We benchmark our SimSiam-
based self-supervised method on Clothing-1M to compare
performance on a real-world noise model. Here, it is impor-
tant to note that DivideMix and ELR use ImageNet initializa-
tion and model ensembling, which significantly contribute
to their excellent performance. In comparison, our SimSiam-
based model, trained from scratch and without any tricks,
reaches an accuracy only 3% below these more complex ap-
proaches. Confirming earlier findings, we observe that their
performance degrades sharply when imbalance is introduced.
In contrast, our SimSiam model yields very similar perfor-
mance regardless of the imbalance level, in accordance with
earlier findings. It significantly outperforms both DivideMix
and ELR by more than 2% and 4% for γ = 5 and γ = 10,
respectively. This shows that self-supervised pre-training
is an effective strategy in large-scale datasets with realistic
noise patterns.

Method γ = 1 γ = 50 γ = 100

DivideMix [25] 73.9 67.1 64.9
ELR [29] 74.2 63.9 59.6
SimSiam+Logit+SuperLoss 71.1 69.3 68.2

Table 1: Results on Clothing-1M with varying imbalance.

4. Conclusion

In this work, we jointly tackle the problems of learning
from long-tailed distributions and learning with noisy labels.
Despite the vast literature that exists on both fields, these
issues are usually tackled separately, often by making strong
assumptions which are violated in the joint setting. Our pro-
posed solution is inspired by recent findings in the field of
semi-supervised learning. It consists of a two-stage learn-
ing process that first pre-trains the model using one of the
existing self-supervised techniques, followed by fine-tuning
using a robust loss function. We surprisingly find that all self-
supervised methods that we experiment with are remarkably
robust to class imbalance, even though they have not been
explicitly designed for this use-case. Overall, the proposed
approach shows excellent robustness to both class imbalance
and label noise, and set a new state of the art on CIFAR
and on the real-world, large-scale dataset, Clothing1M in
severe noise and class imbalance conditions. We hope that
this serves as strong baseline for future exploration in this
topic.
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A. Appendix

A.1. Related Work

We are not aware of any work that jointly tackles long-
tailed learning and training with noise and review these two
fields separately.

Long-tailed learning, i.e. learning with imbalanced
classes, is a way to alleviate the performance degradation
due to imbalance in the class distribution. Existing works in
this field can be divided into three categories. First, several
methods focus on changing the data that is given as input
to the model [8, 23]. The most common strategy here is to
over-sample the rare classes, or equivalently to under-sample
the dominant classes. A second solution is to modify either
the algorithm design or the loss function that is used to train

the model. Loss functions designed for imbalanced data
include the focal loss [28], the logit adjustment loss [31] as
well as the label-distribution aware margin loss [4]. Their
common idea is to assign a higher loss to samples from rare
classes, thereby providing a stronger supervisory signal for
the model to learn these classes. Thirdly, some methods
modify the outputs predicted by the model. This family of
post-hoc correction can either modify the threshold [31], or
change the weights of the final classifier [20] usually using
some normalization procedure.

Decoupling the learning procedure into representation
learning and classification was proposed for long-tailed data
in [20]. The key finding was that training a model us-
ing instance-balanced sampling conventionally, followed
by training a classifier robust to imbalance works extremely
well for long-tailed data. Our approach is very similar in
spirit to this idea. However, in the presence of label noise,
standard supervised learning collapses due to noise memo-
rization. Therefore, we use self-supervised learning to learn
effective representations, and train a classifier using losses
that are robust to both data imbalance and label noise.

Learning with label noise is an active research field
where existing approaches can be categorized into three
groups. First, label correction methods aim to relabel the
corrupted labels. They try to formulate explicit or implicit
noise models to characterize the distribution of noisy and
true labels [24]. However, to recover the ground-truth labels,
these approaches usually require the support of a small set
of clean samples. Second, loss correction techniques seek to
modify the loss function to achieve robustness, by using pre-
calculated Backward or Forward noise transition matrix [33],
or combining cross entropy and reverse cross entropy [38].
Lastly, a third group of methods adopts sample selection
to identify potentially clean samples from a noisy training
dataset. MentorNet [19] introduces a data-driven curriculum
learning paradigm in which a pre-trained mentor network
guides the training of a student network. Co-teaching [16]
trains two DNNs simultaneously, and let them teach each
other with some selected samples during every mini-batch.
DivideMix [25] trains two networks simultaneously and fits
a Gaussian Mixture Model (GMM) on its per-sample loss
distribution to divide the training samples into a labeled set
and an unlabeled set.

Early Learning Regularization (ELR) [29] is a recent
advance in learning with noisy labels. The key observation
here is that the clean samples are learnt first, followed by the
noisy samples in the later epochs. Using this insight, ELR
proposed a regularization term to prevent memorization of
the noisy samples. All these methods are designed with
the underlying assumption that classes are balanced. As a
result, this idea of separating noisy and clean samples using
different techniques does not work as effectively when the



data is imbalanced, as illustrated in our results in Section 3.

A.1.1 Background on Augmentation-invariant Self-
Supervision

Prior work has shown that self-supervision for visual data
can be tackled in various ways. In contrast to older ap-
proaches that propose a variety of pretext tasks [44, 13, 32],
recent approaches all revolves around the principle of learn-
ing invariance to random image augmentations (e.g. scaling,
color jitter, blur, etc.) using a Siamese network architec-
ture [6, 9, 11, 14, 17, 42]. Specifically, the goal is to maxi-
mize the similarity between the encoded representations of
two augmented versions of the same image. Because this
procedure can collapse to trivial solutions, different remedies
have been proposed.

Earlier methods like SimCLR [9], SimCLRv2 [10] and
MoCo [17], for instance, use negative samples and con-
trastive losses based on artificially constructed positive and
negative pairs. More recent methods like BYOL [14] and
SimSiam [11] have shown that it is possible to use only pos-
itive pairs. The trick is to rely on asymmetric operations
such as propagating gradients through only one of the two
Siamese branches. SimSiam [11], for its part, can be seen
as a minimalist version of BYOL [14] without momentum
encoder. Clustering-based method like SwAV [6], DeepClus-
ter [5] or Sela [2] are instead based on trainable versions
of the k-means algorithm that learns image representations
leading to clusters stable against random augmentations.
Lastly, Barlow Twins [42] is able to prevent collapse without
considering image pairs at all nor asymmetric operations
thanks to a novel loss function based on redundancy reduc-
tion. While these approaches appear very diverse, they all
display excellent performance for visual representation learn-
ing in situations where data is perfectly balanced (typically,
on ImageNet [35]). In this work, we show that the benefits of
self-supervised pre-training extend to the imbalanced setting
as well.

A.2. Implementation Details

We briefly describe the self-supervised training protocols
for each considered method. In all cases, we stay as close
as possible to the original protocols, only making minimal
changes required to pass from ImageNet-based training to
CIFAR and Clothing1M.

Backbone encoder. For all the datasets, we use a
ResNet18 [18] backbone. For the CIFAR-10 and CIFAR-
100, the first convolutional layer has a stride of 3× 3 instead
of the usual 7 × 7 and the first max pooling layer is re-
moved [18]. During SSL pre-training and fine-tuning, we
attach a projection head whose configuration depends on the

specific SSL method, as described below.

SimCLR: We pre-train SimCLR for 1000 epochs using
the Adam optimizer [22] with a learning rate of 0.001, a
weight decay of 10−6 and a batch size of 512. For fine-tuning
the model on the noisy labels, we train a linear classifier on
top of the representations extracted by the encoder. For
this, we train for 25 epochs using Adam with a learning rate
of 0.001 and a weight decay of 10−6.

SimSiam: We follow the original SimSiam implementa-
tion, except that we use 2 FC layers in the projection head
instead of 3 as we find it slightly better in our case. We
pre-train the network for 800 epochs using SGD with a learn-
ing rate of lr × bs/256, a base lr = 0.03 and a batch size
bs = 512. We use a cosine decay schedule except during
the initial warm-up period where it is scaled linearly for 10
epochs. The weight decay is set to 0.0005 and the SGD
momentum is 0.9. For fine-tuning, we train the full pro-
jection head (2 FC layers) with Adam for 10 epochs and
a learning rate of 0.003 without weight decay and with a
batch size of 256. When the noise exceeds νSimSiam = 60%,
we only fine-tune the last FC layer with a learning rate of
0.01. This strategy is very similar the method proposed in
SimCLRv2 [10].

BYOL: We follow the original architecture for the projec-
tion and predictor heads [14], but we use the Adam optimizer
instead of LARS [41] due to the small size of the CIFAR
training sets. We use the same pre-training protocol as for
SimSiam, with a base learning rate set to 0.001 and a weight
decay of 1.5 · 10−6. For fine-tuning, we again follow Sim-
Siam, but this time switching from 2 FC layers to 1 FC layer
at νBYOL = 40% noise.

Barlow Twins: As for BYOL, we pre-train using the
Adam optimizer instead of LARS as in [42]. The pre-training
protocol is identical to SimSiam except the base learning rate
is set to 0.003. The λ parameter is kept to 0.005 as in [42]
but we find that setting the size of the projection head’s
hidden and output layers to 2048 improves performance. For
fine-tuning, we again use the same protocol as for BYOL
and SimSiam except for νBarlowTwins = 20% noise.

A.3. Additional evaluations

Comparison of self-supervised methods. We present
experimental results for each of the considered self-
supervised methods in Fig. 4a-4c for CIFAR-10 and Fig. 4d-
4f for CIFAR-100.We observe that BYOL significantly out-
performs other methods in low-to-moderate noise levels by
up to 3~4%. This is consistent with the overall superior
results achieved by BYOL in balanced and noiseless set-
tings compared to other self-supervised methods [11, 14].
We hypothesize that this superiority is due to the weight-
averaging trick used by BYOL, which is also employed to
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Figure 3: Results for two-stage learning on the Clothing1M
dataset as a function of the imbalance level and length of self-
supervised pre-training (in epochs). For all γ values, both
the k-NN as well as the accuracy after fine-tuning values
achieve their maximum values after 400 epochs.

improve results by ELR [29]. Other methods, in compari-
son, performs on par at this noise regime. Conversely, we
find that BYOL significantly underperforms compared to the
other methods at high-noise levels. Interestingly, SimSiam,
which is mostly similar to BYOL in principle except for
the weight-averaging part, is either on par or significantly
better than other self-supervised approaches under severe
noise. Overall, we find it interesting and rather unexpected
that all self-supervised approaches are robust to strong class
imbalance. For instance, all approaches obtains at least 60%
accuracy on CIFAR-10 with γ = 100 at 60% noise, which
is unprecedented.

Comparison with SOTA. Experimental comparisons
with state-of-the-art methods and other baselines are pre-
sented in Figure 4 for CIFAR-10 and CIFAR-100 at several
imbalance levels. Self-supervised pre-training leads to sig-
nificant gains over state-of-the-art methods at any noise level
in strongly imbalanced situations (e.g. accuracy is 10% to
30% above for CIFAR-10 with γ = 100).

When the imbalance is moderate, self-supervised models
are able to achieve reasonable performance (e.g. 90.1% to
92.0% for CIFAR-10 when γ = 1 and noise ν = 20%),
but they do not match the fully-supervised counterparts of
DivideMix [25] and ELR [29], which are able to achieve
95.7% and 95.8% in this setting, respectively. Overall, these
specialized approaches still perform better as long as both the
imbalance and noise level are not too severe. For instance,
all self-supervised methods start outperforming DivideMix
on CIFAR-100 at γ = 5 when the noise level is above 70%.
More generally, we observe that the performance of the self-
supervised models degrade much less, even when the noise
is increased to 80% or 90%. In particular, we achieve a
new state-of-the-art for both CIFAR-10 and CIFAR-100 at
90% noise by achieving (with SimSiam) 88.1% and 53.0%
respectively in the imbalanced case. This is an improvement
of 12.1% and 21.5% over DivideMix.
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Figure 4: Results on CIFAR-10 and CIFAR-100 datasets as a function of symmetric noise.


