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Abstract

We provide a detailed analysis of network pre-training
on the task of object detection. To this end, we train de-
tectors on large datasets like OpenlmagesV4, ImageNet Lo-
calization and COCO. We analyze how well their features
generalize to tasks including image classification, seman-
tic segmentation and object detection on small datasets.
Some important conclusions from our analysis include — 1)
Pre-training on large detection datasets is crucial for fine-
tuning on small detection datasets, especially when precise
localization is needed. 2) Detection pre-training also ben-
efits other localization tasks like semantic segmentation but
adversely affects image classification. 3) Features for im-
ages which are similar in the object detection feature space
are likely to be similar in the image classification feature
space but the converse is not true. 4) Visualization of fea-
tures reveals that activation of detection networks typically
covers the entire object, while activation of classification
networks focus on parts. Therefore, detection networks are
poor at classification when multiple instances are present in
an image or when an instance only covers a small fraction
of an image.

1. Introduction

For several computer vision problems like object de-
tection, image segmentation and image classification, pre-
training on large scale datasets is common [30, 13, 9], since
it leads to better results and faster convergence [60, 22, 9,

, 1'7]. However, the effect of pre-training in computer vi-
sion is often evaluated by training networks for the task of
image classification, on datasets like ImageNet [8], Places
[60], JFT [48], Instagram [33] efc., but rarely for object de-
tection. It can be argued that the task of object detection
subsumes image classification, so a network good at object
detection should learn richer features than one trained for
classification. After all, this network has access to an or-
thogonal semantic information, like the spatial extent of an
object. However, it can also be argued that forcing a net-
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Figure 1: Detection performance (mAP %) at different IoUs
on PASCAL-VOC 2007 [1 1] test set of detectors pre-trained
on different datasets.

work to learn position sensitive information may affect its
spatial invariance properties which help in recognition. To
this end, we provide a comprehensive analysis and compare
network pre-training on object detection and image classifi-
cation.

We pre-train the network on OpenlmagesV4 [25]
(OPENIMAGES) dataset on the object detection task and
fine-tune it on tasks like semantic segmentation, ob-
ject detection and classification on datasets like PASCAL-
Voc [11], Coco [28], CALTECH-256 [14], SUN-397 [51]
and OXFORD-102 FLOWERS [36]. For a stronger eval-
uation, we also pre-train on the ImageNet classifica-
tion dataset [8] with bounding-box annotations on 3,130
classes [45] IMAGENET-LOC, as opposed to IMAGENET-
CLs for ImageNet Classification dataset without bounding
boxes) and the COCO dataset [28] which helps us in eval-
uating the importance of the number of training samples.
We then design careful experiments to understand the differ-
ences in properties of features which emerge by pre-training
on detection vs. classification.

Our experimental analysis reveals that pre-training on
object detection can improve performance by more than 5%
on PASCAL-VoOC for object detection (especially at high
IoUs) and 3% for semantic segmentation. However, de-
tection features are significantly worse at performing clas-
sification compared to features from IMAGENET-CLS pre-
trained networks (~ 8% on CALTECH-256). We also find



Method / Pre-trained Dataset mAP@0.5 mAP@0(.7

DCNvl [7] 81.9 68.2
DCNv2 [62] 84.9 73.5
IMAGENET-CLS [£] 84.6 76.3
IMAGENET-LOC [8, 45] 86.5 80.0
Coco [28] 86.8 80.7
OPENIMAGES [25] 86.8 81.1

Table 1: Baseline and our results on PASCAL-VOC
2007 [11] object detection dataset.

that if features (like average pooled Conv5) are similar in
the object detection feature space, they are likely to be simi-
lar in the image classification feature space, but the converse
is not true. Visualization of activations for object detection
shows that they often cover the entire extent of an object, so
are poor at recognition when an object is present in a small
part of an image or when multiple instances are present.

2. Analysis

We perform pre-training on multiple detection datasets
and compare it with IMAGENET-CLS pre-training for dif-
ferent computer vision tasks like object detection, image
classification and semantic segmentation. For detection pre-
training, our experimental setup is as follows. All our de-
tection networks are pre-trained first on IMAGENET-CLS if
not mentioned otherwise. They are then trained on detection
datasets like OPENIMAGES [25], IMAGENET-LOC [8, 45]
and Coco [28]. The SNIPER [46] detector is trained on
all the datasets. We use multiple pre-training datasets for
two reasons - 1) To thoroughly evaluate our claims about
pre-training for the detection task 2) Since the datasets con-
tain different number of classes and training examples, it
also provides an indication of the magnitude of improve-
ment one can expect by pre-training on detection datasets
of different sizes.

Datasets For the object detection task, we fine-tune on
the PASCAL-VOC dataset [11]. We use the VOC 07+12
trainval set for training and the VOC 07 test set for eval-
uation. For the semantic segmentation task, we follow
[7, 16,31, 3] and use VOC 2012 plus additional annotations
provided in [15]. For image classification, we fine-tune on
CALTECH-256 [14], SUN-397 [51] and OXFORD-102
FLOWERS [36]. We use the official split of trainval and
test sets for CALTECH-256 and OXFORD-102 FLOWERS;
for SUN-397 we follow [22] and use the first split for train-
ing and evaluation.

Architecture We briefly describe the architecture of the
detection heads. On OPENIMAGES detector after Conv5
(2048,14,14), i.e. the last layer of the ResNet backbone be-
fore FC layers, we have the following layers: ConvPro
(256,14,14), FC1 (1024), FCc2 (1024), Ooutput (501),
Regression (4). The same architecture is used for
the COCO detector, except that the Output layer is 81-

dimensional. For the IMAGENET-LOC detector, the archi-
tecture is the same as described in [45].

2.1. Object Detection

Baseline Configuration and Results For our object de-
tection experiments, we train our detectors (SNIPER with
ResNet-101) on 3 datasets: OPENIMAGES, COCO and
IMAGENET-LOC. Our OPENIMAGES model obtains 45%
mAP (at 0.5 overlap) on the validation set. It is trained at 2
scales, (480, 512) and (768, 1024) without negative chip
mining. Inference is also performed at these two scales
only. For the COCO model, training and inference is per-
formed at 3 scales (480, 512), (800, 1280) and (1400,2000)
and the detector obtains an mAP of 46.1% (COCO met-
ric) on the test-dev set. The IMAGENET-LOC model ob-
tains 37.4% mAP (at 0.5 overlap) on the ImageNet Detec-
tion dataset (not IMAGENET-LOC). This detector was only
trained at a single scale of (512, 512) on IMAGENET-LOC
without any negative chip mining. Inference is also per-
formed only at a scale of (512, 512) as compared to others,
this dataset contains relatively bigger objects.

Fine-tuning on PASCAL-VOC We fine-tune these pre-
trained models on PASCAL-VOC [1 1] using the same set of
scales as COCO for both training and inference. Detection
heads of the models pre-trained on detection datasets are
re-initialized before fine-tuning. Training is performed for
7 epochs with learning rate step-down at the end of epoch
5. Horizontal flipping is used for data augmentation. The
results are shown in Table 1.

Pre-training helps at Higher IoU As shown in Table 1, our
baseline network pre-trained on IMAGENET-CLS obtains
an mAP of 76.3% at 0.7 overlap, while the OPENIMAGES,
Coco and IMAGENET-LOC models obtain 81.1%, 80.7%
and 80% mAP, improving performance on PASCAL by as
much as 4.8%. However, such large improvements do not
translate to lower overlap thresholds. For example, the dif-
ference in mAP between IMAGENET-CLS and the OPEN-
IMAGES model at an overlap of 0.5 is only 2.2%. We plot
the mAP for all the detection models at different overlap
thresholds in Fig 1. This shows that pre-training for detec-
tion helps to a large extent in improving localization per-
formance. We also observe this phenomenon on the COCO
dataset: when OPENIMAGES pre-training is used, the per-
formance at 0.5 improves by 0.7%, but results at 0.75 im-
prove by 1.4%.

Relationship between dataset size and performance im-
provement Another pattern we observe is that the number
of samples in the pre-training dataset did not affect the fine-
tuning performance to a large extent. The important factor
was whether the network was pre-trained on a reasonably
large detection dataset (> 1M training instances) or not.
Pre-training Improves General Localization Ability De-
spite the performance improvement, it is unclear whether



Pre-training Dataset / Category ~ Vehicle  Animal % missed object  occluded Low occluded Medium
IMAGENET-LOC (Cls) 84.52 82.98
IMAGENET-LOC without Category ~ 86.83 83.95 IMAGENET-CLS [8] 14.7% 15.7%
IMAGENET-LOC 8720  84.83 OPENIMAGES [25] 10.1% 10.8%

Table 3:
PAascAL-Voc 2007 [
].

Table 2: Results on PASCAL-VOC (mAP@0.7) af-

ter removing certain category during pre-training. in[

80.0
Method / Pre-trained Dataset mloU ~75.0
375
DCNv1 [7] 75.2 570.0
265.0
IMAGENET-CLS [8] 75.7 <
IMAGENET-LOC [§, 45] 78.3 GEJGO.O
OPENIMAGES [25] 78.6 55.0
50.0

Table 4: Baseline and our fine-tuning results on
PAsScAL-VocC 2012 [11] semantic segmentation
dataset.

detection pre-training improves detector’s localization abil-
ity in general or only on certain seen classes. To this end, we
remove “ Vehicle” or “Animal” category from IMAGENET-
Loc during detection pre-training and compare fine-tuning
results on PASCAL-VocC. To be more fair, we pre-train
both classifier and detector on IMAGENET-LOC samples,
where detector is trained as usual while classifier is trained
with only class labels, denoted as IMAGENET-LoC (Cls).
As shown in Table 2, detection pre-training still improves
fine-tuning performance on these categories after removing
them, suggesting that it improves localization ability in gen-
eral.

2.2. Semantic Segmentation

Baseline Configuration and Results We fine-tune de-
tection networks for the semantic segmentation task on
PASCAL-VoOC 2012. We use Deformable ConvNets [7] as
our backbone in DeepLab [3] the same as [7] in our experi-
ments. Results are shown in Table 4.

Detection Pre-Training Helps Segmentation The results
after fine-tuning are shown in Table 4. These results show
that networks pre-trained for object detection obtain a 3%
performance improvement compared to image classifica-
tion. We evaluate this for the Openlmages dataset and also
for IMAGENET-LOC dataset.

Error Analysis We also perform experiments to understand
where these improvements occur. Specifically, we study if
the improvements from detection pre-trained networks are
due to better segmentation at boundary pixels or not. For
this we evaluate the accuracy at boundary pixels and non-
boundary pixels. The boundary pixels are obtained by ap-
plying morphological dilation on the “void” labeled pixels
which often occurs at object boundaries.

Missed objects under different occlusion levels in
] test set. Results obtained with the tool
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Figure 2: Trimap (left) and Anti-Trimap(right) experiments.

In particular, we perform two types of evaluations: 1)
Accuracy at pixels which are within a distance = from an
object boundary (“trimap experiment” [21, 23, 3, 4]) 2) Ac-
curacy at pixels of an object or background as opposed to
boundary pixels (“anti-trimap experiment”). The first evalu-
ation compares the accuracy at boundary pixels and the sec-
ond one compares the accuracy for pixels which are not at
the boundary. The results for these experiments are shown
in Fig. 2. These results show that the improvement in per-
formance is not due to better classification at boundary pix-
els but the whole extent of object.

2.3. Image Classification

We also compare the effect of pre-training for im-

age classification by evaluating multiple pre-trained de-
tection backbones like IMAGENET-LOC and COCO apart
from OPENIMAGES. Diverse classification datasets like
CALTECH-256, SUN-397 and OXFORD-102 FLOWERS
are considered. Apart from fine-tuning for image classifica-
tion, we also evaluate off-the-shelf features from detection
and classification backbones.
Fine-Tuning on Classification Results for fine-tuning dif-
ferent pre-trained networks on classification datasets are
shown in Table 8. These results show that pre-training on
IMAGENET-CLS outperforms IMAGENET-LOC, OPENIM-
AGES, and COCO by a significant margin on all three clas-
sification datasets. Therefore, pre-training for object detec-
tion hurts performance for image classification. It is a bit
counter-intuitive that a network which also learns about the
spatial extent of an object is worse at classification. To get
a better understanding of the possible reasons, we evalu-
ate features which are extracted from the pre-trained image
classification networks without any fine-tuning.



Feature Top— 1 Acc Pre-trained Dataset IMAGENET-CLS [8,45]  OPENIMAGES [25]
CALTECH-256 [14] 84.7 76.7
Conv5 76.7 SUN-397 [51] 57.3 511
ConvProj blob (256,14,14)  69.7 OXFORD-102 FLOWERS [30] 87.4 83.1
ConvPr Oj: blob (256,4,4) 72.4 Table 6: Linear classification results (Top-1 Accuracy) using
ConvProj blob (256,2,2) 73.3 Conv5 features from IMAGENET-CLS and OPENIMAGES pre-
ConvPro7j blob (256) 74.1 trained networks.
FC1 (1024) 71.6
FC2 (1024) 70.0 treai PAScAL-VoC CALTECH-256
Pre-trained Dataset \pa0s  mAP@0.7  Top-1 Acc
] . . . IMAGENET-LoOC (Cls) 84.5 76.6 85.8
Table 5:  Linear classification results on IMAGENET-LOC 86.5 80.0 823

CALTECH-256 [14] using different features
from the detection head of OPENIMAGES [25]
pre-trained object detection network.

Conv5 features We average pool the Conv5 features ex-
tracted from networks pre-trained on OPENIMAGES and
IMAGENET-CLS. Then we add a linear classifier followed
by a softmax function to perform image classification. The
results for different datasets are presented in Table 6. This
shows that without fine-tuning, there exists a large per-
formance gap between the features which are good for
object detection vs. those which are trained for the task
of image classification. The performance of the average
pooled Conv5 features of IMAGENET-LOC and OPENIM-
AGES pre-trained networks is the same for classification on
CALTECH-256. For Coco, the performance drops further
by 2%, possibly because of the smaller number of classes in
object detection.

Intermediate Detection Features Table 5 compares fea-
tures extracted from different layers in the detection head
of the OPENIMAGES pre-trained object detection network.
We present results for classification on the CALTECH-
256 [14] dataset when a linear classifier is applied to
different features, including avg pooled Conv5 (2048),
ConvProj blob (256,14,14), avg pooled ConvPro]
blob (256,4,4), avg pooled ConvProj blob (256,2,2),
avg pooled (ConvPro3j) (256), FC1 (1024) and FC2
(1024) features. We find that FC1 is better than FC2.
The avg pooled (ConvProj) (256) is better than avg
pooled ConvProj blob (256,2,2), which is better than
ConvProj blob (256,4,4). Therefore, it is evident that pre-
serving spatial information hurts image classification. Al-
though averaging is an operation which can be learned from

Pre-trained Dataset CALTECH-256 [14]  SUN-397 [51] OXFORD-102 FLOWERS [36]
IMAGENET-LOC [8, 45] 82.3 58.3 90.9
Coco [28] 79.8 57.8 91.4
OPENIMAGES [25] 82.2 59.5 92.6
IMAGENET-CLS [8] 86.3 61.5 95.0

Table 8: Results (Top-1 accuracy) for fine-tuning different
pre-trained networks on classification datasets.

Table 7: Fine-tuning results on detection and classification with
identical pre-training samples.

a higher dimensional representation (like ConvProj blob
(256,14,14)), it is also easily possible to overfit to the train-
ing set in a higher-dimensional feature space. We also find
that as we approach the Output layer of detection, the per-
formance for image classification deteriorates.
Comparison with Identical Pre-training Samples To fur-
ther verify our empirical results, we pre-train base networks
with identical training samples in IMAGENET-LOC for clas-
sification and detection, then compare the fine-tuning re-
sults accordingly. The detector is pre-trained as usual and
classifier is pre-trained on IMAGENET-LOC with only class
label, denoted as IMAGENET-LOC (Cls). As shown in Ta-
ble 7, the patterns are inline with the results and analysis
discussed above, suggesting that task difference is the main
factor behind the observed patterns.

3. Qualitative Analysis and Visualization

We also present extensive qualitative analysis and visu-
alization for the downstream tasks. Due to page limit we
refer the readers to Appendix 6.1 and 6.2.

4. Related Work

Related work is discussed in Appendix 6.3.

5. Conclusion

We present an extensive study on object detection pre-
training. When fine-tuning on small detection datasets, we
show that pre-training on large detection datasets is bene-
ficial when higher degree of localization is desired. Typ-
ically, detection pre-training is beneficial for tasks where
spatial information is important such as detection and seg-
mentation, but when spatial invariance is needed, like clas-
sification, it can hurt performance. We also conduct feature
level analysis and visualization analysis to provide a deeper
understanding on the internal difference between detection
and classification pre-training.
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6. Appendix
6.1. Visualization

Semantic and Feature Analysis on Image Classification.
In Fig 3 we show the most similar images in Conv5 feature
space for IMAGENET-CLS and OPENIMAGES pre-trained
networks on CALTECH-256. As can be seen, similar im-
ages from IMAGENET-CLS features can have multiple ob-
jects; however for OPENIMAGES, the most similar image
pairs typically match in shape and size. To understand
the relationship between OPENIMAGES and IMAGENET-
CLs features, we perform K-means clustering with different
numbers of clusters (from 2 to 1000). Then, given an im-
age pair in the same cluster in an embedding (like OPENIM-
AGES), we check if the same image pair belongs to the same
cluster in another embedding (like ImageNet) or not. We
plot this probability in Fig 6. This plot shows that if features
are similar in the OPENIMAGES space, they are likely to
be similar in the IMAGENET-CLS space; however the con-
verse is not true. Some example images which are close in
the IMAGENET-CLS space but distant in the OPENIMAGES
space are shown in the middle of Fig 3. This shows that
objects of different scale and similar texture can be close
in the IMAGENET-CLS space but far away in the OPENIM-
AGES space. We briefly describe how we define close and
distant. An image pair is considered to be close if it is part
of the same cluster when the number of clusters is large (>
1000). Animage pair is considered to be distant if it not part
of the same cluster when the number of clusters is small (<
5).

We also show the t-SNE [32] visualization of Conv5
features from IMAGENET-CLS and OPENIMAGES pre-
trained networks before fine-tuning. Results in Fig 7 show
that features from the same class are clustered and close to
each other in the IMAGENET-CLS space; however, OPEN-
IMAGES features are fragmented.

Activation Visualization To illustrate the differences in the
learned representations between networks pre-trained on
detection and classification datasets, we visualize the ac-
tivation maps (Conv5) and investigate which part of in-
put images contribute more. As shown in Fig 4(a-b), the
IMAGENET-CLS pre-trained activation map tend to focus
on discriminative parts. On the other hand, OPENIMAGES
pre-trained models emphasize on the entire spatial extent of
the objects. Moreover, the latter exhibits an instance-level
representation, especially when multiple objects are present
such as Fig 4(c-e).

Mask-out visualization Besides visualizing activation
maps, we further conduct “Mask-out” visualization to re-
veal the relationship between image parts and the final class
prediction. Specifically, we shift a 60x60 blank mask over
the input image and measure the output confidence of the
correct class. The classification layer for IMAGENET-CLS

and the detection head for OPENIMAGES is replaced with a
linear classification layer. In Fig 5, we show the classifica-
tion probability at each pixel assuming that the center of the
mask is placed at that location. We can see that for many lo-
cations (like the head of the camel), the classification score
of the IMAGENET-CLS classifier drops to zero, which is not
the case for OPENIMAGES. This is because detector relies
more on the entire spatial extent of an object to make a pre-
diction so the classification score is not sensitive to minor
structural changes in the image, while the classifier focuses
more on discriminative parts.

6.2. Qualitative Results and Error Analysis

Qualitative Results and Error Analysis on Object De-
tection. We show qualitative results on the PASCAL-
Voc dataset for OPENIMAGES and IMAGENET-CLS pre-
training. Fig 8 shows that localization for the OPENIM-
AGES model is better. The small gap between mAPQ@Q.1
(where localization errors are typically ignored) and higher
IoUs like 0.5 shown in Fig | indicates that large localization
errors are rare. We also observe in Fig 8 that the OPENIM-
AGES model handles occlusion cases better. To further ver-
ify this observation, we analyze the errors using the analysis
tools in [19, 28]. Quantitative results are mentioned in Ta-
ble 3 which demonstrate that the OPENIMAGES pre-trained
network is indeed better under occlusion.

Qualitative and Semantic Analysis on Semantic Seg-
mentation We provide some qualitative examples for seg-
mentation predictions in Fig 9 (using IMAGENET-LOC and
IMAGENET-CLS). From these examples, we find that the
network pre-trained on classification is unable to cover en-
tire objects as it is weak at understanding instance bound-
aries - like in the case of the cow in Fig 9. Detection pre-
training provides a better prior about the spatial extent of
an instance which helps in recognizing parts of an object.
It also helps more for object classes like sheep (+7.5%),
cow (+6.5%), dining-table (+5.6%). These classes typically
have a multi-modal distribution in appearance (like color
and shape distribution). On the other hand, classes like Pot-
ted Plant which have a consistent shape and appearance,
obtain no improvement in performance when detection pre-
training is used.

6.3. Related Work

Large Scale Pre-training ImageNet pre-training was cru-
cial to obtain improvements over state-of-the-art results on
a wide variety of tasks such as object detection [27, 29, 37,

, 6, 27], semantic segmentation [3, 18, 4, 30, 57], ac-
tion/event recognition [49, 58, 52, 50] etc. Due to the im-
portance of pre-training, the trend continued towards col-
lecting progressively larger classification datasets such as
JFT [48], Places [60] and Instagram [33] to obtain better
performance. While the effect of large-scale classification



Close in ImageNet
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Figure 3: Qualitative results of feature space analysis. Left/Right: Image pairs that are closest in feature space of IMAGENET-
CLS/OPENIMAGES pre-trained network. Middle: Image pairs that are close in feature space of IMAGENET-CLS pre-trained
network but distant in that of OPENIMAGES pre-trained network.
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Figure 4: Activation visualization of networks pre-trained on

IMAGENET-CLS [8] and OPENIMAGES [25].
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Figure 6: Feature analysis. Similar features in OPENIM-
AGES space are more likely to be similar in IMAGENET-CLS
space, but the reverse is not true.
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Figure 5: Mask-out visualization. The probability of the
correct class at each blank mask position is shown.
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Figure 7: t-SNE [32] visualization of Conv5 features from
IMAGENET-CLS [8] and OPENIMAGES [25] pre-trained
networks.
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Figure 8: Qualitative results from detectors pre-trained on IMAGENET-CLS [8] and OPENIMAGES [25] Above: OPENIM-
AGES pre-trained detector shows better localization ability. Green and red boxes are from OPENIMAGES pre-trained and
IMAGENET-CLS pre-trained detectors respectively. Below: OPENIMAGES pre-trained detector handles occusion cases bet-
ter. Blue boxes are correct predictions from both detectors while green boxes are occluded objects successfully detected only

by the OPENIMAGES pre-trained detector.
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Figure 9: Qualitative results of semantic segmentation from networks pre-trained on IMAGENET-CLS [8] (Above) and
IMAGENET-LoOC [8, 45] (Below). The IMAGENET-LOC model is better at covering entire objects while the classification
pre-trained model is more likely to mis-classify pixels on some parts of an object.

is extensively studied [40, 9], there is little work on under-
standing the effect of pre-training on object detection.

Transfer Learning The transferability of pre-trained fea-
tures has been well studied [1, 53, 20, 22, 5, 48, 42]. For
example, [|] measured the similarity between a collection
of tasks with ImageNet classification; [5] studied how to
transfer knowledge learned on large classification datasets
to small fine-grained datasets; [22] addressed relationship
among ImageNet pre-training accuracy, transfer accuracy

and network architecture; [55] proposed a computational
approach to model relationships among visual tasks of vari-
ous abstract levels and produced a computational taxonomic
map. However, the visual tasks in [55] did not involve ob-
ject detection although object detection is one of the few
tasks other than image-classification for which large-scale
pre-training can be performed. We study the transferabil-
ity, generalizability, and internal properties of networks pre-
trained for object detection.



Understanding CNNs Towards understanding the superior
performance of CNNs on complex perceptual tasks, vari-
ous qualitative [43, 59, 39, 54, 47, 35, 56, 10, 34] and
quantitative [38, 24, 12, 2] approaches have been proposed.
A number of previous works explain the internal structure
of CNNs by highlighting pixels which contribute more to
the prediction using gradients [43], Guided BackPropoga-
tion [56, 39], deconvolution [47], etc. Other methods adopt
an activation maximization based approach and synthesize
the preferred input for a network neuron [35, 34, 54, 10].
Attempts have also been made to interpret the properties of
CNNs empirically by investigating what it learns and is bi-
ased towards [38, 24, 12, 2], such as shape and texture of
objects.
Training From Scratch While most modern detectors
are pre-trained on the ImageNet classification dataset [27,
, 06, 27, 29, 37], effort has also been made to deviate
from the conventional paradigm and train detectors from
scratch [41, 26, 61]. [17] demonstrated that with a longer
training schedule, detectors trained from scratch can be as
good as ImageNet pre-trained models on large datasets (like
Coco). However, pre-training is still crucial when the
training dataset is small (like PASCAL-VOC).
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