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Abstract

Perception models in autonomous driving systems are
notorious data-hungry. The recent advance in self-
supervised learning makes it become a promising ap-
proach for reducing the required extensive annotation ef-
forts. While large self-supervised models have rivalled the
performance of their supervised counterparts, small models
still struggle. However, small models are always preferred
in real autonomous driving systems. In this work, we ex-
plore simple baselines for improving small self-supervised
models via distillation, called SimDis. Specifically, we
present an offline-distillation baseline, which establishes
a new state-of-the-art, and an online-distillation baseline,
which achieves similar performance with minimal computa-
tional overhead. We hope these baselines will provide useful
experience for relevant future research. Code is available
at: https://github.com/JindongGu/SimDis

1. Introduction

Self-supervised learning is one of the promising tech-
niques to address the data-hungry problem of autonomous
driving systems. Recent self-supervised learning algo-
rithms have largely closed the gap in linear classifier be-
tween unsupervised and supervised representations from
large models (e.g., the gap is only 0.5% for BYOL using
ResNet-200x2 on ImageNet) [5]. However, such gap in-
creases as we reduces the model capacity. For instance, the
linear probing accuracy of BYOL using ResNet-50 is 2.3%
lower than its supervised counterpart. With a smaller model
such as ResNet-18, this gap even increases to 8.9% (our
reimplementation).

We speculate that smaller models with limited represen-
tation power cannot directly solve the self-supervised pre-
training task well. This is because such task is often dif-
ficult, e.g., contrastive learning requires the model to rec-
ognize each instance in a large scale dataset. Meanwhile,
small models are usually preferred in autonomous driving
systems, as it reduces latency, power cost, and carbon emis-
sion. Therefore, it is of significant importance to learn small
but powerful self-supervised models.
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Figure 1: Linear evaluation accuracy of self-supervised
ResNet18: Our baselines SimDis achieve SOTA perfor-
mance.

In this work, we build two strong baselines (called
SimDis) for improving small self-supervised models, by
exploring simple distillation strategies. Distillation has
been successfully used to compress large models in super-
vised setup but rarely considered for self-supervised learn-
ing. Our first baseline is offline: we firstly train a large
model until convergence, and then distill to a small model.
This baseline significantly outperforms previous state-of-
the-art SEED [4], without using memory buffers. For the
second baseline, we simultaneously train the small model
with the large model by exploiting various outputs from
the large model as teaching views. With minimal computa-
tional cost, this online baseline (called SimDis-On) achieves
similar performance as the offline baseline (called SimDis-
Off ), as shown in Figure 1. Moreover, we demonstrate that
these two baselines work well when LARS and Synchro-
nized BatchNorm (both are critical for many self-supervised
learning algorithms) are removed.

2. Related Works

Self-supervised Learning. Recently, self-supervised learn-
ing has been significantly advanced by contrastive learning,
which either takes explicit negatives [10, 13, 12, 7, 3] or
implicit regularization [5, 2]. However, contrastive learning
is desperate for model size, i.e., the larger the model is, the
smaller the gap between the accuracies of self-supervised
and supervised representations. Thereore, in this work we
focuses on improving small models.
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Figure 2: The overview of our distillation approach: The model consists of a teacher (a siamese network marked with T
and T̂ ) and a student model (a siamese network marked with S and Ŝ). The student S is updated to predict projected
representations of both the student and the teacher.

Knowledge Distillation. In supervised learning setting,
knowledge distillation has been broadly studied from differ-
ent perspectives, e.g., transferring knowledge [8, 1, 11, 14],
model architectures [6], and distillation scheme [8, 15]. Re-
cent work CompRess [9] and SEED [4] construct label-free
knowledge to guide the training of small self-supervised
models. Different from their work, our work provides base-
lines that are simpler (e.g., removing memory back and neg-
ative samples), stronger, and computationally efficient.

3. Self-supervised Model Distillation

The overview of our distillation approach is shown in
Fig. 2, which consists of a small student model and a big
teacher model. Both the student and the teacher contains
two siamese networks, which are commonly used in the
self-supervised learning paradigm. Therein, the blue-grey
pair (blue indicates the online network while gray refers to
the momentum network) with the bigger rectangles corre-
sponds to the teacher, while the smaller ones to the student.
At the end of the training, we only keep the network marked
with S as the final small backbone.
Teacher. The teacher model with the siamese network
architecture can be trained with various self-supervised
learning methods. In this work, the recent state-of-the-art
method BYOL [5] is applied. Similar to other methods,
BYOL uses two neural networks: the online network (the
blue rectangle marked with T ) and the target network (the
gray rectangle marked with T̂ ). The online network T is de-
fined by a set of weights θ and is comprised of three stages:
an encoder fTθ , a projector gTθ and a predictor qTθ . The target
network T̂ with the parameters ξ is an exponential moving
average of T .

Given an image x, BYOL produces two augmented
views v and v′. The representation, the projection and the
prediction of v are yTθ = fTθ (v), z

T
θ = gTθ (y

T
θ ) and qTθ (z

T
θ ),

respectively. The training loss measures the mismatch be-
tween the prediction of v on T and the projection of v′ on
T̂ , namely, the mean squared error between the normalized

predictions and projections,

LTθ,ξ =
∥∥∥∥qTθ (zTθ )− z′T̂θ ∥∥∥∥2

2

, (1)

where the overline symbol means l2-normalized. Symmet-
rically, the mismatch between the prediction of v′ on T and
the projection of v on T̂ is also taken as part of the final loss.

At each training step, the parameters θ of T is updated
with gradient-based optimizer. Note that the gradients re-
ceived by T̂ are stopped during optimization. The parame-
ters ξ of T̂ is updated with moment-based update rule:

ξ ← τξ + (1− τ)θ, (2)

where τ ∈ [0, 1] is specified as the target decay rate.
Student. The student model is a similar siamese architec-
ture as the teacher but uses a smaller encoder fSθ .

The loss used to update the student includes two parts:
BYOL loss and Distillation loss. Similar to the loss in Eq. 1,
the BYOL loss measures the mean squared error between
the normalized predictions on S and projections on Ŝ. The
Distillation loss measures the mismatch between the predic-
tions on S and projections of another T̂ of the same image.
Note that two prediction heads are built in the student, one
for predicting the projections on Ŝ and another for predict-
ing the projections on T̂ . T̂ is a stable version of T during
training, while they perform similarly at the end of the train-
ing. Hence, T̂ is chosen across the paper. See Sec. 3.2 for
more design choices.

The updates of the student are similar to the ones of
the teacher. Namely, the parameters of S are updated with
SGD, while the parameters of Ŝ is updated with moment-
based update rules as in Eq. 2. The only difference is the
distillation loss term, which guides the training of the stu-
dent with the representations learned by the teacher. The
updates of the student and the teacher can be simultaneous
in a single stage or separate in two stages, which correspond
to the online and offline distillation schemes.
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Methods # of Views FLOPs Training Epochs
N=100 N=300 N=1000

SimDis-Off 2 (8.2G + 1.8G) ×M ×N 61.76 65.15 67.18
SimDis-On 2 (4.1G + 1.8G) ×M ×N 58.08 64.49 66.78

SimDis-On-7v 7 (4.1G + 1.8G + 12M) ×M ×N 60.65 64.58 66.14

Table 1: The FLOPs and top-1 accuracy (in %) of each method is reported. M,N stands for the number of training examples
and the number of training epochs. 4.1G corresponds to the FLOPs of forward inference of a single image on T , 1.8G to
the ones on S, and the 12M brought by multi-view predictions can be ignored. Given limited training time budgets, the
offline method outperforms online one. The performance gap can be reduced by multi-view distillation. When the models
are trained for more epochs, they all performs similarly.

3.1. Offline/Online Distillation Schemes

Offline. The offline distillation scheme consists of two
stages. In the first stage, only the teacher model is trained
as described in Sec. 3. In the second stage, the pre-trained
teacher model is fixed, and the student model is trained
using both BYOL and Distillation losses. This method is
dubbed as SimDis-Off.
Online. The online distillation scheme updates the stu-
dent and the teacher simultaneously. The teacher model is
trained with BYOL loss, which is the same as the first stage
of SimDis-Off. At the same time, the student is updated to
minimize the BYOL loss and the Distillation loss. Corre-
spondingly, this method is termed as SimDis-On.

3.2. Online vs. Offline

Setting. The online distillation train both the student and
the teacher for N epochs, while the offline one first trains
the teacher forN epochs and then the student forN epochs.
Pros and Cons. In this setting, compared to online distilla-
tion, the offline one requires more computational resources,
namely the extra cost to do forward inference on the whole
training dataset for N times (See Tab. 1). Note that the extra
cost cannot be saved by caching the representations because
the augmented images vary with epoch.

The online distillation has also limitations. When the
training epoch N is small, the teacher is not well trained at
the beginning of the training; the representations extracted
by the teacher are not very helpful for guiding the training
of the student (See N = 100 in Tab. 1).
Improvement. To overcome the limitation, we propose
multi-view distillation. Specifically, we replace the single-
view distillation term with the multi-view distillation loss.
The new loss computes the MSE between 6 predictions and
the corresponding projections. The projections to predict

are z′Sθ , zŜθ , z
T
θ , z

′T
θ , z

T̂
θ , and z′T̂θ . The projection z′Ŝβ is al-

ready computed in the first BYOL loss term. There are 7
views in total to predict. Hence, this method is dubbed as
SimDis-On-7v. Although multiple projections (views) are

required to compute loss, only tiny extra computational cost
is required since the 6 views are free to use in online case.

4. Experiments

In this section, we conduct three experiments to verify
our baselines: 1) We demonstrate the pros and cons of on-
line/offline distillation as well as our improvement; 2) We
compare our baseline with other self-supervised model dis-
tillation methods; 3) We remove LARS and SyncBN for
promoting a simple and practical setup.
Architecture. The teacher model is based on ResNet50, a
commonly used network in the self-supervised setting. The
ResNet50 backbone with an output dimension of 2048 is
taken as the encoder in T . The projector is an MLP that
consists of FC(4096)+BN+ReLU+FC(256). The predictor
of T uses the same architecture as the projector. The en-
coder and the projector of T̂ have the same architecture as
in T . The student model is constructed by replacing the
ResNet50 with ResNet18.
Optimization. In the standard setting, the LARS optimizer
with a cosine decay learning rate schedule and a warm-
up period of 10 epochs is used. The base learning rate
is set to 0.3 for 256 samples and linearly scaled up with
the batch size. We use a batch size of 2048 split over 32
V100 GPUs, where the synchronized Batch Normalization
(SyncBN) is applied. For T̂ and Ŝ, the exponential moving
average parameter τ starts from 0.99 and is increased to one
during training, following [5]. The models are trained on
ImageNet-1k dataset and evaluated with the standard linear
evaluation protocol [5]. The learning rate for linear evalua-
tion is set as 0.001.

4.1. Online vs. offline Distillation

In this experiment, we compare the computational cost
of online and offline distillation as well as their perfor-
mance. The FLOPs of the models and their top-1 accuracy
under different training epochs are reported in Tab. 1.

The offline method requires more computational FLOPs

3



200 400 600 800 1000
Epochs

45

50

55

60

65

70
To

p 
1 

Ac
cu

. (
\%

)

SimDis-Off
SimDis-On
SimDis-On-7v
Supervised

SEED
MoCo-v2
BYOL

(a) Top-1 Accuracy

200 400 600 800 1000
Epochs

74

76

78

80

82

84

86

88

90

To
p 

5 
Ac

cu
. (

\%
)

SimDis-Off
SimDis-On
SimDis-On-7v
Supervised

SEED
MoCo-v2
BYOL

(b) Top-5 Accuracy

Figure 3: The linear evaluation of ResNet18 backbone is reported. The self-supervised methods on ResNet18 show a large
gap with the supervised counterpart. SEED boosts the ResNet18 backbone in the self-supervised setting. Both our online
and offline methods improve the backbone further.

than the online one. Compared with single-view distillation
(SimDis-On), the extra cost brought by Multi-view distil-
lation (SimDis-On-7v) is negligible. The offline baseline
SimDis-Off consistently outperforms the online baseline
SimDis-On, but the gap gradually closes with longer train-
ing. Though the gap is about 3.65% for 100 epoch training,
the multi-view distillation improves the online method by
2.57%, narrowing the gap significantly with only negligible
computational footprint. We hypothesize that the multiple
distillation targets provided by the teacher and the student
make the gradient optimization direction more accurate.

4.2. Self-supervised Model Distillation

In this experiment, we compared our approach with
various methods: ResNet18 trained with MoCo-v2 and
BYOL, ResNet18 trained with SEED and our baselines. In
SEED [4], we set the hyper-parameters as in [4] and replace
the teacher and the data processing correspondingly. We
also provide supervised ResNet18 as an upper bound. We
run Supervised, MoCo-v2 and SEED on a single node, fol-
lowing their settings. For the remaining methods, we follow
the optimization setting described above.

Figure 3 reports the top-1 and top-5 accuracy with train-
ing epochs of 100, 300, and 1000. When ResNet18 is
applied as the encoder, the self-supervised learning meth-
ods (i.e., BYOL and MoCo-v2) suffers a large performance
gap with the supervised learning. The existing distilla-
tion method SEED can reduce the performance gap by a
large margin. Our approach SimDis can further bridge the
gap significantly. Both online and offline baselines achieve
state-of-the-art performance. We hope they serve as strong
baselines for the development of self-supervised distillation
in the future.

4.3. Removing LARS and SyncBN

Our distillation approach is based on self-supervised
learning. In current literatures, the self-supervised learning
setting often requires LARS optimizer and SyncBN to sta-
bilize the training process. However, the LARS optimizer
and SyncBN are computationally expensive.

We explore a simple and practical setting for self-
supervised model distillation, where none of LARS opti-
mizer and SyncBN is applied and only a single machine
with 8 GPUs is used. In this experiment, LARS optimizer
and SyncBN are not applied, and the model is trained for
100 epochs with a batch size of 8*128 and a base learning
rate of 0.05. We explore different variants of our approach
and distill the student model with different teaching views
and their combinations.

The student model ResNet18 achieves 55.96 top1 accu-
racy when trained without distillation. In online setting,
when one view from teacher is available, the student per-
formance can be improved (See Tab. 2 in Appendix). In
the case that all 7 views are available, the student achieves
the best 63.52. In offline setting, a teacher with ResNet50
is first trained with BYOL approach for 100 epochs on the
given single machine. The teacher achieves 65.83 top1 ac-
curacy. Given the fixed teacher, the students are trained with
different targets for 100 epochs. Since the teacher performs
well even at the start of training, the students is improved
with the help of teacher. When all 7 views are used, the
online students are still comparable to the offline students.

5. Conclusion
In this work, we explore how to improve small self-

supervised models with knowledge distillation. A strong
baseline is proposed for future studies in this direction. Em-
pirically experiments demonstrate that the proposed base-
line achieves the state-of-the-art performance.
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Target views for prediction using S-v
Num View Online OfflineViews on Student Views on Teacher

S-v′ Ŝ-v Ŝ-v′ T -v T -v′ T̂ -v T̂ -v′

X 1 55.96 -
X X 2 58.20 59.67
X X 2 58.29 62.08
X X 2 59.25 59.72
X X 2 58.84 62.66
X X X 3 58.74 62.06
X X X 3 59.55 63.27
X X X X X 5 59.06 59.12

X X X X X X X 7 63.52 63.14

Table 2: The teacher models and the student models are trained for 100 epochs without syncBN or LARS. Different combi-
natons of the 7 representation views are explored. Generally, more views lead to the better performance.
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